首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
We consider the extended Hubbard model in the atomic limit on a Bethe lattice with coordination number z. By using the equations of motion formalism, the model is exactly solved for both attractive and repulsive intersite potential V. By focusing on the case of negative V, i.e., attractive intersite interaction, we study the phase diagram at finite temperature and find, for various values of the filling and of the on-site coupling U, a phase transition towards a state with phase separation. We determine the critical temperature as a function of the relevant parameters, U/|V|, n and z and we find a reentrant behavior in the plane (U/|V|, T). Finally, several thermodynamic properties are investigated near criticality.  相似文献   

2.
We rationalize the origins of a threshold instability and the mechanism of finite temperature fragmentation in highly Si-doped C(60-m)Si(m) heterofullerenes via a first-principles approach. Cage disruption is driven by enhanced fluctuations of the most internal Si atoms. These are located within fully segregated Si regions neighboring the C-populated part of the cage. The predominance of inner Si atoms over those involved in Si-C bonds marks the transition from thermally stable to unstable C(60-m)Si(m) systems at m = 20.  相似文献   

3.
We study the structure of mixed monolayers of large (3 μm diameter) and small (1 μm diameter) very hydrophobic silica particles at an octane-water interface as a function of the number fraction of small particles ξ. We find that a rich variety of two-dimensional hexagonal super-lattices of large (A) and small (B) particles can be obtained in this system due to strong and long-range electrostatic repulsions through the nonpolar octane phase. The structures obtained for the different compositions are in good agreement with zero temperature calculations and finite temperature computer simulations.  相似文献   

4.
We apply a diagrammatic expansion method around the atomic limit () for the U-t-t ' Hubbard model at half filling and finite temperature by means of a continued fraction representation of the one-particle Green's function. From the analysis of the spectral function we find an energy dispersion relation with a modulation of the energy gap in the insulating phase. This anisotropy is compared with experimental ARPES results on insulating cuprates. Received 18 May 2000 and Received in final form 9 August 2000  相似文献   

5.
We study here the onset of charge density wave instabilities in quantum Hall systems at finite temperature for Landau level filling nu>4. Specific emphasis is placed on the role of disorder as well as on an in-plane magnetic field. Beyond some critical value, disorder is observed to suppress the charge density wave melting temperature to zero. In addition, we find that a transition from perpendicular to parallel stripes (relative to the in-plane magnetic field) exists when the electron gas thickness exceeds approximately 60 A. The perpendicular alignment of the stripes is in agreement with the experimental finding that the easy conduction direction is perpendicular to the in-plane field.  相似文献   

6.
We use quantum Monte Carlo simulations to determine the finite temperature phase diagram and to investigate the thermal and quantum melting of stripe phases in a two-dimensional hard-core boson model. At half filling and low temperatures the stripes melt at a first order transition. In the doped system, the melting transitions of the smectic phase at high temperatures and the superfluid smectic (supersolid) phase at low temperatures are either very weakly first order, or of second order with no clear indications for an intermediate nematic phase.  相似文献   

7.
We study phase transitions in the lattice version of the abelian Higgs model, a model which can exhibit both spontaneous symmetry breaking and confinement. When the Higgs charge is the basic U(1) unit, we find that the Higgs and confinement regions are not separated by a phase transition and form a single homogenous phase which we call the total screening phase. The model does not undergo a symmetry restoring phase transition at finite temperature.If the Higgs charge is some multiple of the basic unit the model follows the conventional wisdom: there are 3 phases (normal, Higgs and confinement) at zero temperature, two of which disappear above some critical point. We apply the lessons learned from the lattice Higgs model to understand the behavior of the weak interactions at high temperature.In a long appendix we give an intuitive physical picture for the Polyakov-Susskind quark liberating phase transition and show that it is related to the Hagedorn spectrum of a confining model. We end with a collection of effective field theory approximations to various lattice theories.  相似文献   

8.
9.
We evaluate the one-loop effective potential at finite temperature for QCD. High-temperature as well as low-temperature limits are investigated. We do not find a phase transition, i.e., the asymmetric Copenhagen ground state is maintained for any temperature.  相似文献   

10.
We theoretically study the relaxation of high energy single particle excitations into molecules in a system of attractive fermions in an optical lattice, both in the superfluid and the normal phase. In a system characterized by an interaction scale U and a tunneling rate t, we show that the relaxation rate scales as ~Ctexp[-αU(2)/t(2)ln(U/t)] in the large U/t limit. We obtain explicit expressions for the temperature and density dependent exponent α, both in the low temperature superfluid phase and the high temperature phase with pairing but no coherence between the molecules. We find that the relaxation rate decreases both with temperature and deviation of the fermion density from half filling. We show that quasiparticle and phase degrees of freedom are effectively decoupled within experimental time scales allowing for observation of ordered states even at high total energy of the system.  相似文献   

11.
The chiral phase transition in QCD at finite chemical potential and temperature can be characterized for small chemical potential by its curvature and the transition temperature. The curvature is accessible to QCD lattice simulations, which are always performed at finite pion masses and in finite simulation volumes. We investigate the effect of a finite volume on the curvature of the chiral phase transition line. We use functional renormalization group methods with a two flavor quark-meson model to obtain the effective action in a finite volume, including both quark and meson fluctuation effects. Depending on the chosen boundary conditions and the pion mass, we find pronounced finite-volume effects. For periodic quark boundary conditions in spatial directions, we observe a decrease in the curvature in intermediate volume sizes, which we interpret in terms of finite-volume quark effects. Our results have implications for the phase structure of QCD in a finite volume, where the location of a possible critical endpoint might be shifted compared to the infinite-volume case.  相似文献   

12.
We analyze and compare the effect of spatial and spin anisotropy on spin conductivity in a two dimensional S = 1/2 Heisenberg quantum magnet on a square lattice. We explore the model in both the Néel antiferromagnetic (AF) phase and the collinear antiferromagnetic (CAF) phase. We find that in contrast to the effects of spin anisotropy in the Heisenberg model, spatial anisotropy in the AF phase does not suppress the zero temperature regular part of the spin conductivity in the zero frequency limit–rather it enhances it. In the CAF phase (within the non-interacting approximation), the zero frequency spin conductivity has a finite value, which is suppressed as the spatial anisotropy parameter is increased. Furthermore, the CAF phase displays a spike in the spin conductivity not seen in the AF phase. We also explore the finite temperature effects on the Drude weight in the AF phase (within the collisionless approximation). We find that enhancing spatial anisotropy increases the Drude weight value and increasing spin anisotropy decreases the Drude weight value. Based on these studies, we conclude that antiferromagnets with spatial anisotropy are better spin conductors than those with spin anisotropy at both zero and finite temperatures.  相似文献   

13.
W.N. Mei  Y.C. Lee 《Physica A》1979,96(3):413-434
A monolayer of 4He atoms is treated as a system of hard-sphere bosons in a thin film geometry, with a finite thickness. The method of pseudopotential is used to calculate first the energy spectrum, and then the Helmholtz free energy and other thermodynamic functions of the system. It is found that Bose-Einstein condensation exists below a definite temperature. Much like a liquid-gas transition, the boson system displays a high temperature normal phase, a low temperature condensed superfluid phase and coexistence region. In the present treatment, the minimum momentum associated with the finite thickness of monolayer is used as a parameter. We find that the transition temperature is linearly proportional to the density of the 4He film. After performing double-tangent construction of the Helmholtz free energy curve we find for the specific heat a rounded peak at the transition temperature, in agreement with recent experiments. The ratio of the superfluid density at the transition point to the transition temperature is found to be essentially a constant.  相似文献   

14.
《Nuclear Physics A》1996,609(4):537-561
We study some bulk thermodynamical characteristics, meson properties and the nucleon as a baryon-number-one soliton in hot quark matter in the NJL model as well as in hot nucleon matter in a hybrid NJL model in which the Dirac sea of quarks is combined with a Fermi sea of nucleons. In both cases, working in the mean-field approximation, we find a chiral phase transition from the Goldstone to the Wigner phase. At finite density the chiral order parameter and the constituent quark mass have a non-monotonic temperature dependence — at finite temperatures not close to the critical one they are less affected than in cold matter. Whereas quark matter is rather soft against thermal fluctuations and the corresponding chiral phase transition is smooth, nucleon matter is much stiffer and the chiral phase transition is very sharp. The thermodynamical variables show large discontinuities which is an indication for a first-order phase transition. We solve the B = 1 solitonic sector of the NJL model in the presence of external hot quark and nucleon media. In the hot medium at intermediate temperature the soliton is more bound and less swelled than in the case of cold matter. At some critical temperature, which for nucleon matter coincides with the critical temperature for the chiral phase transition, we find no more a localized solution. According to this model scenario one should expect a sharp phase transition from nucleon to quark matter.  相似文献   

15.
By using Monte Carlo (MC) methods we study the deconfining transition of QCD with color group SU(3) at finite temperature. The fermion polarization effects are kept in account by implementing the pseudo-fermion method. We use two different lattice volumes (63 × 4, 83 × 4) to check finite size effects. Even in the presence of light quarks we find a discontinuous transition. The existence of this transition is observed both creating metastable states and using mixed phase runs.  相似文献   

16.
We consider a two-dimensional semiconductor with a local attraction among the carriers. We study the ground state of this system as a function of the semiconductor gap. We find a direct transition from a superconducting to an insulating phase for no doping at a critical value, the single particle excitations being always gapped. For finite doping we find a smooth crossover. We calculate the critical temperature due to both the particle excitations and the Berezinkii-Kosterlitz-Thouless transition. Received 8 December 1998  相似文献   

17.
A simple and direct approach to handle summation is presented. With this approach, we analytically investigate Bose-Einstein condensation of ideal Bose gas trapped in an isotropic harmonic oscillator potential. We get the accurate expression of Tc which is very close to (0.43% larger than) the experimental data. We find the curve of internal energy of the system vs. temperature has a turning point which marks the beginning of a condensation. We also find that there exists specific heat jump at the transition temperature, no matter whether the system is macroscopic or finite. This phenomenon could be a manifestation of a phase transition in finite systems.  相似文献   

18.
陆展鹏  魏兴波  刘天帅  陈阿海  高先龙 《物理学报》2017,66(12):126701-126701
通过数值方法求解了有限温度下一维均匀Hubbard模型的热力学Bethe-ansatz方程组,得到了在给定温度和相互作用强度情况下,比热c、磁化率χ和压缩比κ随化学势μ的变化图像.基于有限温度下一维均匀Hubbard模型的精确解,利用化学势(μ)-泛函理论研究了一维谐振势下的非均匀Hubbard模型,给出了金属态和Mott绝缘态下不同温度情况时局域粒子密度n_i和局域压缩比_κi随格点的变化情况.  相似文献   

19.
We investigate the phases of dense QCD matter at finite temperature with Dyson-Schwinger equations for the quark propagator for N f = 2 + 1 flavors. For the gluon propagator we take a fit to quenched lattice data and add quark-loop effects perturbatively in a hard-thermal-loop-hard-dense-loop approximation. We consider 2SC and CFL-like pairing with chiral up and down quarks and massive strange quarks and present results for the condensates and the phase diagram. We find a dominant CFL phase at chemical potentials larger than 500-600MeV. At lower values of the chemical potential we find a 2SC phase, which also exists in a small band at higher temperatures for larger chemical potentials. With values of 20–30 MeV, the critical temperatures to the normal phase turn out to be quite small.  相似文献   

20.
We study the phase transition between the normal and nonuniform (Fulde-Ferrell-Larkin-Ovchinnikov) superconducting state in quasi-two-dimensional d-wave superconductors at finite temperature. We obtain an appropriate Ginzburg-Landau theory for this transition, in which the fluctuation spectrum of the order parameter has a set of minima at nonzero momenta. The momentum shell renormalization group procedure combined with epsilon expansion is then applied to analyze the phase structure of the theory. We find that all fixed points have more than one relevant direction, indicating the transition is of the fluctuation-driven first-order type for this universality class.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号