首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study the motion of solitary-wave solutions of a family of focusing generalized nonlinear Schr?dinger equations with a confining, slowly varying external potential, V(x). A Lyapunov-Schmidt decomposition of the solution combined with energy estimates allows us to control the motion of the solitary wave over a long, but finite, time interval. We show that the center of mass of the solitary wave follows a trajectory close to that of a Newtonian point particle in the external potential V(x) over a long time interval. Communicated by Rafael D. Benguria Submitted: March 7, 2005 Accepted: January 9, 2006  相似文献   

2.
This paper considers two-dimensional gravity solitary waves moving through a body of density stratified water lying below vacuum. The fluid domain is assumed to lie above an impenetrable flat ocean bed, while the interface between the water and vacuum is a free boundary where the pressure is constant. We prove that, for any smooth choice of upstream velocity field and density function, there exists a continuous curve of such solutions that includes large-amplitude surface waves. Furthermore, following this solution curve, one encounters waves that come arbitrarily close to possessing points of horizontal stagnation.We also provide a number of results characterizing the qualitative features of solitary stratified waves. In part, these include bounds on the wave speed from above and below, some of which are new even for constant density flow; an a priori bound on the velocity field and lower bound on the pressure; a proof of the nonexistence of monotone bores in this physical regime; and a theorem ensuring that all supercritical solitary waves of elevation have an axis of even symmetry.  相似文献   

3.
The purpose of this paper is to reveal the influence of dissipation on travelling wave solutions of the generalized Pochhammer–Chree equation with a dissipation term, and provides travelling wave solutions for this equation. Applying the theory of planar dynamical systems, we obtain ten global phase portraits of the dynamic system corresponding to this equation under various parameter conditions. Moreover, we present the relations between the properties of travelling wave solutions and the dissipation coefficient r of this equation. We find that a bounded travelling wave solution appears as a bell profile solitary wave solution or a periodic travelling wave solution when r= 0; a bounded travelling wave solution appears as a kink profile solitary wave solution when |r| > 0 is large; a bounded travelling wave solution appears as a damped oscillatory solution when |r| > 0 is small. Further, by using undetermined coefficient method, we get all possible bell profile solitary wave solutions and approximate damped oscillatory solutions for this equation. Error estimates indicate that the approximate solutions are meaningful.  相似文献   

4.
Summary After a review of the existing state of affairs, an improvement is made in the stability theory for solitary-wave solutions of evolution equations of Korteweg-de Vries-type modelling the propagation of small-amplitude long waves. It is shown that the bulk of the solution emerging from initial data that is a small perturbation of an exact solitary wave travels at a speed close to that of the unperturbed solitary wave. This not unexpected result lends credibility to the presumption that the solution emanating from a perturbed solitary wave consists mainly of a nearby solitary wave. The result makes use of the existing stability theory together with certain small refinements, coupled with a new expression for the speed of propagation of the disturbance. The idea behind our result is also shown to be effective in the context of one-dimensional regularized long-wave equations and multidimensional nonlinear Schr?dinger equations.  相似文献   

5.
Three new iteration methods, namely the squared-operator method, the modified squared-operator method, and the power-conserving squared-operator method, for solitary waves in general scalar and vector nonlinear wave equations are proposed. These methods are based on iterating new differential equations whose linearization operators are squares of those for the original equations, together with acceleration techniques. The first two methods keep the propagation constants fixed, while the third method keeps the powers (or other arbitrary functionals) of the solution fixed. It is proved that all these methods are guaranteed to converge to any solitary wave (either ground state or not) as long as the initial condition is sufficiently close to the corresponding exact solution, and the time step in the iteration schemes is below a certain threshold value. Furthermore, these schemes are fast-converging, highly accurate, and easy to implement. If the solitary wave exists only at isolated propagation constant values, the corresponding squared-operator methods are developed as well. These methods are applied to various solitary wave problems of physical interest, such as higher-gap vortex solitons in the two-dimensional nonlinear Schrödinger equations with periodic potentials, and isolated solitons in Ginzburg–Landau equations, and some new types of solitary wave solutions are obtained. It is also demonstrated that the modified squared-operator method delivers the best performance among the methods proposed in this article.  相似文献   

6.
In this paper, we apply the theory of planar dynamical systems to carry out qualitative analysis for the dynamical system corresponding to B-BBM equation, and obtain global phase portraits under various parameter conditions. Then, the relations between the behaviors of bounded traveling wave solutions and the dissipation coeffiicient μ are investigated. We find that a bounded traveling wave solution appears as a kink profile solitary wave solution when μ is more than the critical value obtained in this paper, while a bounded traveling wave solution appears as a damped oscillatory solution when μ is less than it. Furthermore, we explain the solitary wave solutions obtained in previous literature, and point out their positions in global phase portraits. In the meantime, approximate damped oscillatory solutions are given by means of undetermined coefficients method. Finally, based on integral equations that reflect the relations between the approximate damped oscillatory solutions and the implicit exact damped oscillatory solutions, error estimates for the approximate solutions are presented.  相似文献   

7.
以时变雷诺方程为控制方程,用k-ε模型封闭该方程,采用体积函数(VOF)方法来跟踪波动自由表面,建立了二维垂向波浪数学模型,并用已有的实验资料进行了验证.随后用该模型模拟了半圆型防波堤与孤立波在淹没、平顶水位、完全露顶且不越浪3种典型工况下的相互作用过程.得到了半圆堤附近的流场、压强场和波面的变形过程.结果表明,在淹没状态下,半圆堤背浪面的底部会产生涡旋;平顶水位时,由于越浪的冲击作用,在半圆堤的背浪面将逐渐形成一对较大的涡旋,而半圆堤背浪面的底部,速度始终相对较小;而在露顶不越浪时,半圆堤的迎浪面会出现波浪的二次爬升的现象.为进一步研究结构物附近的污染物的输移扩散和泥沙运动提供基础.  相似文献   

8.
We establish soliton-like asymptotics for finite energy solutions to the Dirac equation coupled to a relativistic particle. Any solution with initial state close to the solitary manifold, converges in long time limit to a sum of traveling wave and outgoing free wave. The convergence holds in global energy norm. The proof uses spectral theory and symplectic projection onto solitary manifold in the Hilbert phase space.  相似文献   

9.
The exact analytical solution of the optical soliton equation with higher-order dispersion and nonlinear effects has been obtained by the method of separating variables. The new type of optical solitary wave solution, which is quite different from the bright and dark soliton solutions, has been found under two special cases. The stability of the solitary wave solutions for the optical soliton equation is discussed. Some new conclusion of the stability are obtained, for the solitary wave solutions of the nonlinear wave equations, by using the Liapunov direct method.  相似文献   

10.
Soliton perturbation theory is used to determine the evolution of a solitary wave described by a perturbed nonlinear Schrödinger equation. Perturbation terms, which model wide classes of physically relevant perturbations, are considered. An analytical solution is found for the first-order correction of the evolving solitary wave. This solution for the solitary wave tail is in integral form and an explicit expression is found, for large time. Singularity theory, usually used for combustion problems, is applied to the large time expression for the solitary wave tail. Analytical results are obtained, such as the parameter regions in which qualitatively different types of solitary wave tails occur, the location of zeros and the location and amplitude of peaks, in the solitary wave tail. Two examples, the near-continuum limit of a discrete NLS equation and an explicit numerical scheme for the NLS equation, are considered in detail. For the discrete NLS equation it is found that three qualitatively different types of solitary wave tail can occur, while for the explicit finite-difference scheme, only one type of solitary wave tail occurs. An excellent comparison between the perturbation solution and numerical simulations, for the solitary wave tail, is found for both examples.  相似文献   

11.
In this paper, some novel solitary wave solutions, including solitary-like wave solution, x-periodic soliton solution, y-periodic soliton solution, doubly periodic solution, rational solution, and new non-traveling wave solution, are obtained for (2 + 1)-dimensional Burgers equation by means of the generalized direct ansätz method and different test functions.  相似文献   

12.
Steady two-dimensional turbulent open-channel flow is considered. Stationary single-wave solutions are investigated. The fully-developed oncoming flow is slightly supercritical. The Reynolds number is very large. The analysis is kept free of turbulence modelling. As stationary solitary waves cannot exist in turbulent flow for a plane bottom with constant roughness [1], two particular perturbations of the conditions at the channel bottom are examined: 1) We revisit the case [1] where the friction coefficient locally differs slightly by a constant from the reference value upstream; 2) An unevenness of very small height in the channel bottom (bump, ramp) is admitted, with the bottom roughness taken constant. An analogy between these cases is presented. In both cases, three stationary solutions for the surface elevation are found: A stable and an unstable solitary wave, respectively, and a single wave of a second kind with smaller amplitude. For the latter, an analysis for weak dissipation yields a uniformly valid solution that is in good agreement with the numerical results for various parameters. (© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
In the present paper, we construct exact solutions to a system of partial differential equations iux + v + u | v | 2 = 0, ivt + u + v | u | 2 = 0 related to the Thirring model. First, we introduce a transform of variables, which puts the governing equations into a more useful form. Because of symmetries inherent in the governing equations, we are able to successively obtain solutions for the phase of each nonlinear wave in terms of the amplitudes of both waves. The exact solutions can be described as belonging to two classes, namely, those that are essentially linear waves and those which are nonlinear waves. The linear wave solutions correspond to waves propagating with constant amplitude, whereas the nonlinear waves evolve in space and time with variable amplitudes. In the traveling wave case, these nonlinear waves can take the form of solitons, or solitary waves, given appropriate initial conditions. Once the general solution method is outlined, we focus on a number of more specific examples in order to show the variety of physical solutions possible. We find that radiation naturally emerges in the solution method: if we assume one of u or v with zero background, the second wave will naturally include both a solitary wave and radiation terms. The solution method is rather elegant and can be applied to related partial differential systems. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, the effects of quadratic singular curves in integrable wave equations are studied by using the bifurcation theory of dynamical system. Some new singular solitary waves (pseudo‐cuspons) and periodic waves are found more weak than regular singular traveling waves such as peaked soliton (peakon), cusp soliton (cuspon), cusp periodic wave, etc. We show that while the first‐order derivatives of the new singular solitary wave and periodic waves exist, their second‐order derivatives are discontinuous at finite number of points for the solitary waves or at infinitely countable points for the periodic wave. Moreover, an intrinsic connection is constructed between the singular traveling waves and quadratic singular curves in the phase plane of traveling wave system. The new singular periodic waves, pseudo‐cuspons, and compactons emerge if corresponding periodic orbits or homoclinic orbits are tangent to a hyperbola, ellipse, and parabola. In particular, pseudo‐cuspon is proposed for the first time. Finally, we study the qualitative behavior of the new singular solitary wave and periodic wave solutions through theoretical analysis and numerical simulation.  相似文献   

15.
根据Hopf-Cole变换法和试探函数法的基本思想,引入一个变换,并把它应用于求解(2+1)维破裂孤子方程组、(2+1)维Nizhnik-Novikov-Vesslov方程组和(2+1)维Broer-Kaup方程组,得到了这三个方程组的许多新的解析解,包括孤波解和奇异行波解.该方法也适用于其它方程组.  相似文献   

16.
We establish a long time soliton asymptotics for a nonlinear system of wave equation coupled to a charged particle. The coupled system has a six-dimensional manifold of soliton solutions. We show that in the large time approximation, any solution, with an initial state close to the solitary manifold, is a sum of a soliton and a dispersive wave which is a solution to the free wave equation. It is assumed that the charge density satisfies Wiener condition which is a version of Fermi Golden Rule, and that the momenta of the charge distribution vanish up to the fourth order. The proof is based on a development of the general strategy introduced by Buslaev and Perelman: symplectic projection in Hilbert space onto the solitary manifold, modulation equations for the parameters of the projection, and decay of the transversal component.  相似文献   

17.
By using the homogeneous balance principle, we derive a Backlund transformation (BT) to (3+1)-dimensionaI Kadomtsev-Petviashvili (K-P) equation with variable coefficients if the variable coefficients are linearly dependent. Based on the BT, the exact solution of the (3+1)-dimensional K-P equation is given. By the same method, we derive a BT and the solution to (2+1)-dimensional K-P equation. The variable coefficients can change the amplitude of solitary wave, but cannot change the form of solitary wave.  相似文献   

18.
Based on the modified Jocobi elliptic function expansion method and the modified extended tanh-function method, a new algebraic method is presented to obtain multiple travelling wave solutions for nonlinear wave equations. By using the method ,Ito‘s 5th-order and 7th-order mKdV equations are studied in detail and more new exact Jocobi elliptic function periodic solutions are found. With modulus m→1 or m→0, these solutions degenerate into corresponding solitary wave solutions, shock wave solutions and trigonometric function solutions.  相似文献   

19.
In this paper we analyse the role which the pressure function on the sea-bed plays in determining solitary waves with vorticity. We prove that the pressure function on the flat bed determines a unique, real analytic solitary wave solution to the governing equations, given a real analytic vorticity distribution. In particular, the pressure function on the flat bed prescribes a unique surface profile for the resulting solitary water wave.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号