首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
一种全耦合多相流分析的并行计算方法   总被引:2,自引:0,他引:2  
王希诚 《力学学报》1999,31(3):276-284
研究了孔隙介质中热、水和汽流全耦合分析的并行计算方法.模型中采用了考虑毛细压力关系的修正有效应力概念,并考虑了相变和潜热传递.基本变量为位移、毛细压力、汽压和温度.并行程序是在国家高性能计算中心(北京)的曙光1000A上借助PVM(ParalelVirtualMachine)软件系统实现的,考题显示出较高的并行加速比和效率  相似文献   

2.
An efficient numerical method is presented for solving the equations of motion for viscous fluids. The equations are discretized on the basis of unstructured finite element meshes and then solved by direct iteration. Advective fluxes are temporarily fixed at each iteration to provide a linearized set of coupled equations which are then also solved by iteration using a fully implicit algebraic multigrid (AMG) scheme. A rapid convergence to machine accuracy is achieved that is almost mesh-independent. The scaling of computing time with mesh size is therefore close to the optimum.  相似文献   

3.
An investigation is made of the performance of algebraic multigrid (AMG) solvers for the discrete Stokes problem. The saddle‐point formulations are based on the direct enforcement of the fundamental conservation laws in discrete spaces and subsequently stabilised with the aid of a regular splitting of the diffusion operator. AMG solvers based on an independent coarsening of the fields (the unknown approach) and also on a common coarsening (the point approach) are investigated. Both mixed‐order and equal‐order interpolations are considered. The dependence of convergence on the ‘degree of coarsening’ is investigated by studying the ‘convergence versus coarsening’ characteristics and their variation with mesh resolution. They show a consistency in shape, which reveals two distinct performance zones, one convergent the other divergent. The transition from the convergent to the divergent zones is discontinuous and occurs at a critical coarsening factor that is largely mesh independent. It signals a breakdown in the stability of the smoothing at the coarser levels of coarse grid approximation. It is shown that the previously observed, mesh‐dependent, scaling of convergence factors, which had suggested inconsistencies in the coarse grid approximation, is not a reliable marker of inconsistency. It is an indirect consequence of the breakdown in the stability of smoothing. For stable smoothing, reduction factors are shown to be largely mesh independent. The ability of mixed‐order interpolation to permit stable smoothing and therefore to deliver mesh‐independent convergence is explained. Two expedient options are suggested for obtaining mesh‐independent convergence for those AMG codes that are based on an equal‐order interpolation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
A perturbation approach is used to study localization phenomena in saturated porous media when thermo-mechanical loadings and thermo-hydro-mechanical couplings are fully taken into account. We show that various types of localization modes are possible depending on the constitutive behavior and loading conditions. Examination of the associated conditions in the light of the classical band approach reveals that the differences between these modes lie in their structure which may involve jumps in different variables (beside the velocity gradient) such as the gradients of heat and fluid fluxes, the temperature and the pressure rates. To cite this article: A. Benallal, C. R. Mecanique 333 (2005).  相似文献   

5.
In this paper, we introduce a fully coupled thermo‐hydrodynamic‐mechanical computational model for multiphase flow in a deformable porous solid, exhibiting crack propagation due to fluid dynamics, with focus on CO2 geosequestration. The geometry is described by a matrix domain, a fracture domain, and a matrix‐fracture domain. The fluid flow in the matrix domain is governed by Darcy's law and that in the crack is governed by the Navier–Stokes equations. At the matrix‐fracture domain, the fluid flow is governed by a leakage term derived from Darcy's law. Upon crack propagation, the conservation of mass and energy of the crack fluid is constrained by the isentropic process. We utilize the representative elementary volume‐averaging theory to formulate the mathematical model of the porous matrix, and the drift flux model to formulate the fluid dynamics in the fracture. The numerical solution is conducted using a mixed finite element discretization scheme. The standard Galerkin finite element method is utilized to discretize the diffusive dominant field equations, and the extended finite element method is utilized to discretize the crack propagation, and the fluid leakage at the boundaries between layers of different physical properties. A numerical example is given to demonstrate the computational capability of the model. It shows that the model, despite the relatively large number of degrees of freedom of different physical nature per node, is computationally efficient, and geometry and effectively mesh independent. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

6.
非饱和多孔介质中热-渗流-力学耦合的混合元法   总被引:2,自引:0,他引:2  
刘泽佳  李锡夔 《力学学报》2006,38(2):170-175
提出了一个非饱和多孔介质中热-渗流-力学耦合分析的混合有限元 方法. 固相位移、应变和净应力;孔隙水和气的压力、压力空间梯度和Darcy速度;多相混 合介质的温度、温度空间梯度和热流量在单元内均为独立变量分别插值. 基于胡海 昌-Washizu 三变量广义变分原理给出的多孔介质中热-渗流-力学耦合问题控制方程的单元弱形式,导 出了单元公式. 采用共旋公式进行几何非线性分析. 数值结果证明了所提出的单元模拟以 应变局部化为特征的渐进破坏的能力  相似文献   

7.
A new method to admit large Courant numbers in the numerical simulation of multiphase flow is presented. The governing equations are discretized in time using an adaptive θ‐method. However, the use of implicit discretizations does not guarantee convergence of the nonlinear solver for large Courant numbers. In this work, a double‐fixed point iteration method with backtracking is presented, which improves both convergence and convergence rate. Moreover, acceleration techniques are presented to yield a more robust nonlinear solver with increased effective convergence rate. The new method reduces the computational effort by strengthening the coupling between saturation and velocity, obtaining an efficient backtracking parameter, using a modified version of Anderson's acceleration and adding vanishing artificial diffusion. © 2016 The Authors. International Journal for Numerical Methods in Fluids Published by John Wiley & Sons Ltd.  相似文献   

8.
Elapsed time is always one of the most important performance measures for polymer injection moulding simulation. Solving pressure correction equations is the most time-consuming part in the mould filling simulation using finite volume method with SIMPLE-like algorithms. Algebraic multigrid (AMG) is one of the most promising methods for this type of elliptic equations. It, thus, has better performance by contrast with some common one-level iterative methods, especially for large problems. And it is also suitable for parallel computing. However, AMG is not easy to be applied due to its complex theory and poor generality for the large range of computational fluid dynamics applications. This paper gives a robust and efficient parallel AMG solver, A1-pAMG, for 3D mould filling simulation of injection moulding. Numerical experiments demonstrate that, A1-pAMG has better parallel performance than the classical AMG, and also has algorithmic scalability in the context of 3D unstructured problems.  相似文献   

9.
We consider numerical solution of finite element discretizations of the Stokes problem. We focus on the transform-then-solve approach, which amounts to first apply a specific algebraic transformation to the linear system of equations arising from the discretization, and then solve the transformed system with an algebraic multigrid method. The approach has recently been applied to finite difference discretizations of the Stokes problem with constant viscosity, and has recommended itself as a robust and competitive solution method. In this work, we examine the extension of the approach to standard finite element discretizations of the Stokes problem, including problems with variable viscosity. The extension relies, on one hand, on the use of the successive over-relaxation method as a multigrid smoother for some finite element schemes. On the other hand, we present strategies that allow us to limit the complexity increase induced by the transformation. Numerical experiments show that for stationary problems our method is competitive compared to a reference solver based on a block diagonal preconditioner and MINRES, and suggest that the transform-then-solve approach is also more robust. In particular, for problems with variable viscosity, the transform-then-solve approach demonstrates significant speed-up with respect to the block diagonal preconditioner. The method is also particularly robust for time-dependent problems whatever the time step size.  相似文献   

10.
针对网格结构离散模型的特点,设计了一类适用于求解大规模二维网格结构数值计算的代数多重网格方法,详细描述了代数多重网格方法中粗化策略与插值算子的构造,并在此基础上得到了一类以该代数多重网格为预条件子的预处理方法。数值试验表明,本文建立的代数多重网格方法及相应的预处理方法是健壮的,具有较好的数值效率,非常适合于大规模网格结构材料的数值计算。近似连续模型的建立为代数多重网格方法的可靠性和计算的准确性提供了有效的理论基础。  相似文献   

11.
Digital images of porous media often include features approaching the image resolution length scale. The behavior of numerical methods at low resolution is therefore important even for well-resolved systems. We study the behavior of the Shan-Chen (SC) and Rothman-Keller (RK) multicomponent lattice-Boltzmann models in situations where the fluid-fluid interfacial radius of curvature and/or the feature size of the medium approaches the discrete unit size of the computational grid. Various simple, small-scale test geometries are considered, and a drainage test is also performed in a Bentheimer sandstone sample. We find that both RK and SC models show very high ultimate limits: in ideal conditions the models can simulate static fluid configuration with acceptable accuracy in tubes as small as three lattice units across for RK model (six lattice units for SC model) and with an interfacial radius of curvature of two lattice units for RK and SC models. However, the stability of the models is affected when operating in these extreme discrete limits: in certain circumstances the models exhibit behaviors ranging from loss of accuracy to numerical instability. We discuss the circumstances where these behaviors occur and the ramifications for larger-scale fluid displacement simulations in porous media, along with strategies to mitigate the most severe effects. Overall we find that the RK model, with modern enhancements, exhibits fewer instabilities and is more suitable for systems of low fluid-fluid miscibility. The shortcomings of the SC model seem to arise predominantly from the high, strongly pressure-dependent miscibility of the two fluid components.  相似文献   

12.
采用格林公式和基本解推导出直接边界积分方程来求解渗流问题.边界积分方程数值离散基于格林元方法(Green element methond),改进了原方法中压力和压力导数的求解方法,命名为混合边界元方法(Mixed boundary element method).相较于格林元类方法,该方法显式考虑了求解节点的外法向流量值和压力值,并使求得的数值解在求解区域上能够连续,符合实际的物理过程,在不增加额外未知数的情况下提高了计算精度.分析了不同网格类型对模拟计算结果的影响,并对稳定渗流问题、非稳定(瞬态)渗流问题和非稳态问题进行了实例计算,结果显示改进方法提高了计算精度,并对各类渗流问题有较好的适应性.  相似文献   

13.
In this work two‐dimensional steady flow problems are cast into a fixed‐point formulation, Q = F(Q). The non‐linear operator, F, is an approximate pseudospectral solver to the Navier–Stokes equations. To search the solution we employ Picard iteration together with a one‐dimensional error minimization and a random perturbation in case of getting stuck. A monotone convergence is brought out, and is greatly improved by using a multigrid strategy. The efficacy of this approach is demonstrated by computing flow between eccentric rotating cylinders, and the regularized lid‐driven cavity flow with Reynolds number up to 1000. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
In this article, we describe a non‐intrusive reduction method for porous media multiphase flows using Smolyak sparse grids. This is the first attempt at applying such an non‐intrusive reduced‐order modelling (NIROM) based on Smolyak sparse grids to porous media multiphase flows. The advantage of this NIROM for porous media multiphase flows resides in that its non‐intrusiveness, which means it does not require modifications to the source code of full model. Another novelty is that it uses Smolyak sparse grids to construct a set of hypersurfaces representing the reduced‐porous media multiphase problem. This NIROM is implemented under the framework of an unstructured mesh control volume finite element multiphase model. Numerical examples show that the NIROM accuracy relative to the high‐fidelity model is maintained, whilst the computational cost is reduced by several orders of magnitude. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
An unstructured non‐nested multigrid method is presented for efficient simulation of unsteady incompressible Navier–Stokes flows. The Navier–Stokes solver is based on the artificial compressibility approach and a higher‐order characteristics‐based finite‐volume scheme on unstructured grids. Unsteady flow is calculated with an implicit dual time stepping scheme. For efficient computation of unsteady viscous flows over complex geometries, an unstructured multigrid method is developed to speed up the convergence rate of the dual time stepping calculation. The multigrid method is used to simulate the steady and unsteady incompressible viscous flows over a circular cylinder for validation and performance evaluation purposes. It is found that the multigrid method with three levels of grids results in a 75% reduction in CPU time for the steady flow calculation and 55% reduction for the unsteady flow calculation, compared with its single grid counterparts. The results obtained are compared with numerical solutions obtained by other researchers as well as experimental measurements wherever available and good agreements are obtained. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

16.
Chernyi’s series method[1] is not proper for the case that(γ-l)/(γ+l)<<2/(γ+1)×M2sin2β (γ=cp/cv-adiabatic index number, M-Much number, β-shock incidence). In this paper, we only suppose that in the neighbour of the shock, there exists a shock layer in which the density of the gas is very big, but we do not remove the case that (γ-1)/(γ+1)<<2/(γ+1)M2sin2β.  相似文献   

17.
Control volume finite element methods (CVFEMs) have been proposed to simulate flow in heterogeneous porous media because they are better able to capture complex geometries using unstructured meshes. However, producing good quality meshes in such models is nontrivial and may sometimes be impossible, especially when all or parts of the domains have very large aspect ratio. A novel CVFEM is proposed here that uses a control volume representation for pressure and yields significant improvements in the quality of the pressure matrix. The method is initially evaluated and then applied to a series of test cases using unstructured (triangular/tetrahedral) meshes, and numerical results are in good agreement with semianalytically obtained solutions. The convergence of the pressure matrix is then studied using complex, heterogeneous example problems. The results demonstrate that the new formulation yields a pressure matrix than can be solved efficiently even on highly distorted, tetrahedral meshes in models of heterogeneous porous media with large permeability contrasts. The new approach allows effective application of CVFEM in such models.  相似文献   

18.
Various discretization methods exist for the numerical simulation of multiphase flow in porous media. In this paper, two methods are introduced and analyzed—a full‐upwind Galerkin method which belongs to the classical finite element methods, and a mixed‐hybrid finite element method based on an implicit pressure–explicit saturation (IMPES) approach. Both methods are derived from the governing equations of two‐phase flow. Their discretization concepts are compared in detail. Their efficiency is discussed using several examples. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

19.
A robust aspect ratio‐based agglomeration algorithm to generate high quality of coarse grids for unstructured and hybrid grids is proposed in this paper. The algorithm focuses on multigrid techniques for the numerical solution of Euler and Navier–Stokes equations, which conform to cell‐centered finite volume special discretization scheme, combines vertex‐based isotropic agglomeration and cell‐based directional agglomeration to yield large increases in convergence rates. Aspect ratio is used as fusing weight to capture the degree of cell convexity and give an indication of cell stretching. Agglomeration front queue is established to propagate inward from the boundaries, which stores isotropic vertex and also high‐stretched cell marked with different flag according to aspect ratio. We conduct the present method to solve Euler and Navier–Stokes equations on unstructured and hybrid grids and compare the results with single grid as well as MGridGen, which shows that the present method is efficient in reducing computational time for large‐scale system equations. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
This paper gives an overview on nonlinear porous flow in low permeability porous media, reveals the microscopic mechanisms of flows, and clarifies properties of porous flow fluids. It shows that, deviating from Darcy's linear law, the porous flow characteristics obey a nonlinear law in a low-permeability porous medium, and the viscosity of the porous flow fluid and the permeability values of water and oil are not constants. Based on these characters, a new porous flow model, which can better describe low permeability reservoir, is established. This model can describe various patterns of porous flow, as Darcy's linear law does. All the parameters involved in the model, having definite physical meanings, can be obtained directly from the experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号