首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The turbulent fluid and particle interaction in the turbulent boundary layer for cross flow over a cylinder has been experimentally studied. A phase-Doppler anemometer was used to measure the mean and fluctuating velocities of both phases. Two size ranges of particles (30μm–60μm and 80μm–150μm) at certain concentrations were used for considering the effects of particle sizes on the mean velocity profiles and on the turbulent intensity levels. The measurements clearly demonstrated that the larger particles damped fluid turbulence. For the smaller particles, this damping effect was less noticeable. The measurements further showed a delay in the separation point for two phase turbulent cross flow over a cylinder. The project supported by the National Natural Science Foundation of China  相似文献   

2.
气固两相流模拟中,当固相尺度接近或大于Kolmogorov尺度时,普通的点源模型将不再适用,固体相的体积效应和表面效应将对流体相产生显著的影响。通过采用直接数值模拟方法,结合内嵌边界方法对湍流中不同湍流强度流体横掠大于Kolmogorov尺度的固相颗粒进行了全尺度模拟,讨论分析了在两种湍流度下方形颗粒对湍流的调制影响以及颗粒的受力情况。  相似文献   

3.
Research on the particle dispersion in the particulate two-phase round jet   总被引:2,自引:0,他引:2  
IntroductionTurbulentflowladenwithparticlesisacommonocurenceinbothnatureandindustry.Recentresearchhasshownthattheparticlecon...  相似文献   

4.
This paper deals with the stress concentration in plane with swveral arbitrarily distributed elliptic holes. By using the functions of complex variables, the stress functions in which the interactions of neighbouring holes are taken into consideration can be constructed. By applying the conformed mapping method to satisfy the boundary conditions of each hole, the governing equations can then be transformed into a set of simultaneous equations through boundary integrals. Moreover, the problems with crack can be derived by changing the elliptical rates of the ellipses, thereby an approximate solution of cracking problem may be obtained. Some computing examples are given in the paper.  相似文献   

5.
.Intr0ductionSurfaceerosionofmaterialbysolid-particleimpactisanimportantprobleminmultiphaseflowindustriaIdevicesandthecharacteristicsoftheparticIe'smotioninaturbulentboundarylayerflowisthebaseofthestudyofthematerialsurfaceerosion.Manycalculationmodelshave…  相似文献   

6.
Three‐dimensional (3D) numerical study is presented to investigate the turbulent flow in meandering compound open channels with trapezoidal cross‐sections. The flow simulation is carried out by solving the 3D Reynolds‐averaged continuity and Navier–Stokes equations with Reynolds stress equation model (RSM) for steady‐state flow. Finite volume method (FVM) is applied to numerically solve the governing equations of fluid flow. The velocity magnitude, tangential velocity, transverse velocity and Reynolds stresses are calculated for various flow conditions. Good agreement between the simulated and available laboratory measurements was obtained, indicating that the RSM can accurately predict the complicated flow phenomenon. Comparison of the calculated secondary currents of four cases (one being inbank flow and other three being overbank flow) with different water depths reveals that (i) the inbank flow exhibits different flow behaviors from that of the overbank flow does and (ii) the water depth has significant effects on the magnitude and direction of secondary currents. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
The motion of fibers in turbulent pipe flow was simulated by 3-D integral method based on the slender body theory and simplified model of turbulence. The orientation distribution of fibers in the computational area for different Re numbers was computed. The results which were consistent with the experimental ones show that the fluctuation velocity of turbulence cause fibers to orient randomly. The orientation distributions become broader as the Re number increases. Then the fluctuation velocity and angular velocity of fibers were obtained. Both are affected by the fluctuation velocity of turbulence. The fluctuation velocity intensity of fiber is stronger at longitudinal than at lateral, while it was opposite for the fluctuation angular velocity intensity of fibers. Finally, the spatial distribution of fiber was given. It is obvious that the fiber dispersion is strenghened with the increase of Re numbers.  相似文献   

8.
Axisymmetric turbulent boundary layers that develop around streamwise oriented long cylinder-like objects can be found in many applications, such as towed array sonars or marine seismic streamers. In many of these applications, turbulent fluctuations within the boundary layer flow can have a negative impact compared with laminar flow conditions. The aim of the present work is to design a surface modification that influences the turbulent boundary layer around a cylinder in axial flow in order to reduce turbulent fluctuations. To design the surface we consider recent findings regarding the turbulence damping effects of groove-like surface structures and combine these insights with the effect of convex transverse curvature on turbulence. We use large-eddy simulations to investigate the flow around a cylinder of modified design and around a reference circular cylinder. Both flows have a radius-based Reynolds number of Rea1.23104. The modified design leads to a 20 % decrease in the average wall shear stress and results in local reductions in the turbulent intensities, Reynolds stress, the temporal velocity spectrum, and the turbulent dissipation rate. The analysis within the anisotropy-invariant space reveals a tendency towards flow relaminarization. However, the new design has no effect on turbulent pressure fluctuations. We provide suggestions on how to further improve the surface design to achieve even greater flow stabilization.  相似文献   

9.
环形通道内湍流旋流流动的数值模拟   总被引:1,自引:0,他引:1  
张健 N  eh  S 《计算力学学报》2000,17(1):14-21
本文应用一种考虑湍流-旋流相互作用及湍流脉动各向异性的新的代数Reynolds应力模型,对环形通道内的湍流旋流流动进行了数值模拟,研究了改主为旋流流数,进口轴向速度及半径比等参数对环形通道内湍流流动的影响,以及对强化环形通道内传热的作用。  相似文献   

10.
The governing equations for axially symmetric flow, where the Reynolds stresses are expressed by scalar turbulent viscosity, are the Reynolds equations. The turbulence model k, ? is used in the well-known form for fully developed turbulent flow.The numerical method, a continuation of the MAC system1, is adapted so that even for high Reynolds cell numbers precision (δx2) can be achieved for the steady flow. Irregular cells join the rectangular network on the curved surface. Von Neumann's stability condition of the linearised numerical system is investigated. Special problems concerning the numerical solution of the turbulence model equations are stated and a special procedure is worked out to ensure that the fields k, ? do not converge to physically meaningless values. The program for the computer is universal in that the boundary problems can be assigned by input data.As an example, an axially symmetrical diffuser with an area ratio of widening 1.40 is computed. Fields of velocity and pressure at the wall as well as fields vT and k are assessed. The results are compared with an experiment. The conclusion is that this method is suitable for the problems mentioned in this study as well as for unsteady flow.  相似文献   

11.
In order to investigate the scale effect of turbulent flow around a circular cylinder, two similarity numbers (criteria) based on turbulent kinetic and dissipation rates associ- ated with the fluctuation characteristics of turbulence wake are deduced by analyzing the Reynolds averaged NavierStokes equations (RANS). The RNG k-s models and finite volume method are used to solve the governing equations and the second-order implicit time and upwind space discretization algorithms are used to discrete the governing equations. A numerical computation of flow parameters around a two-dimensional circular cylinder with Reynolds numbers ranging from 102 to l07 is accomplished and the result indicates that the fluctuation of turbulence flow along the center line in the wake of circular cylinder can never be changed with increasing Reynolds numbers when Re ≥ 3 × 10^6. This conclusion is useful for controlling the scale of numerical calculations and for applying model test data to engineering practice.  相似文献   

12.
13.
IntroductionThecylindricalparticletwo_phaseflowsareofparticularinterestintheprocessingofcompositematerials ,textileindustry ,papermaking ,chemicalengineering ,foodprocessing[1].Thecylindricalparticlesinaflowcanmakethereinforcementofmaterials,thechangeofphysicalpropertyformaterialsandthereductionofdrag .Arranaga[2 ]reportedthatdragreductioneffectsareupto 60 %inpipeflowsbyaddingcylindricalparticlestoflow .Thecylindricalparticleshavealsoeffectsonthemechanismsofflowstability .Theeffectofcylindric…  相似文献   

14.
Turbulent features of streamwise and vertical components of velocity in the negative transport region of asymmetric plane channel flow have been studied experimentally in details. Experiments show that turbulent fluctuations in negative transport region are suppressed, and their probability distributions are far from Gaussian. Besides, the skewness factors attain their negative maxima at the position of the maximum mean velocity, whereas the flatness factors attain their positive maxima at the same position. The project supported by the National Natural Science Foundation of China (19872043)  相似文献   

15.
The turbulence properties of a curved channel flow have been measured by particle tracking method. The results reveal some characteristics of the structure for wall turbulence.  相似文献   

16.
The effect of Lorentz force on particle transport and deposition is studied by using direct numerical simulation of turbulent channel flow of electrically conducting fluids combined with discrete particle simulation of the trajectories of uncharged, spherical particles. The magnetohydrodynamic equations for fluid flows at low magnetic Reynolds numbers are adopted. The particle motion is determined by the drag, added mass, and pressure gradient forces. Results are obtained for flows with particle ensembles of various densities and diameters in the presence of streamwise, wall-normal or spanwise magnetic fields. It is found that the particle dispersion in the wall-normal and spanwise directions is decreased due to the changes of the underlying fluid turbulence by the Lorentz force, while it is increased in the streamwise direction. The particle accumulation in the near-wall region is diminished in the magnetohydrodynamic flows. In addition, the tendency of small inertia particles to concentrate preferentially in the low-speed streaks near the walls is strengthened with increasing Hartmann number. The particle transport by turbophoretic drift and turbulent diffusion is damped by the magnetic field and, consequently, particle deposition is reduced.  相似文献   

17.
Three dimensional large eddy simulation (LES) is performed in the investigation of stably stratified turbulence with a sharp thermal interface. Main results are focused on the turbulent characteristic scale, statistical properties, transport properties, and temporal and spatial evolution of the scalar field. Results show that the buoyancy scale increases first, and then goes to a certain constant value. The stronger the mean shear, the larger the buoyancy scale. The overturning scale increases with the flow, and the mean shear improves the overturning scale. The flatness factor of temperature departs from the Gaussian distribution in a fairly large region, and its statistical properties are clearly different from those of the velocity fluctuations in strong stratified cases. Turbulent mixing starts from small scale motions, and then extends to large scale motions.  相似文献   

18.
An important practical problem in the application and study of drag reduction by polymer additives is the degradation of the polymer, for instance due to intense shearing, especially in recirculatory flow systems. Such degradation leads to a marked loss of the drag-reducing capability of the polymer.Three different polymer types were tested on degradation effects in a closed pipe flow system. The polymers used were Polyox WSR-301, Separan AP-273 and Superfloc A-110, dissolved in water in concentrations of 20 wppm each. The flow system consisted of a 16.3 mm pipe of 4.25 m length. Two different pumps were used: a centrifugal pump and a disc pump. Different solution-preparation procedures were tried and the experiments were performed at different flow rates.Superfloc A-110 proved to be both the most effective drag reducer and most resistant to degradation. Because of very fast degradation, Polyox WSR-301 was found to be unsuitable for being used as a drag reducer in re-circulatory systems. The disc pump proved to be much better suited for pumping the polymer solutions than the centrifugal pump. The degradation curve of the combination Superfloc/disc pump showed a plateau-like region with reasonable drag reduction, which makes it possible to perform (laser Doppler) measurements under nearly constant circumstances during a sufficient time.  相似文献   

19.
There has been considerable discussion in recent years concerning whether a log-law exists for wall-bounded, turbulent bubbly flows. Previous studies have argued for the existence of such a log-law, with a modified von Kármán constant, and this is used in various modelling studies. We provide a critique of this idea, and present several theoretical reasons why a log-law need not be expected in general for wall-bounded, turbulent bubbly flows. We then demonstrate using recent data from interface-resolving Direct Numerical Simulations that when the bubbles make a significant contribution to the channel flow dynamics, the mean flow profile of the fluid can deviate significantly from the log-law behaviour that approximately holds for the single-phase case. The departures are not surprising and the basic reason for them is simple, namely that for bubbly flows, the mean flow is affected by a number of additional dynamical parameters, such as the void fraction, that do not play a role for the single-phase case. As a result, the inner/outer asymptotic regimes that form the basis of the derivation of the log-law for single-phase flow do not exist in general for bubbly turbulent flows. Nevertheless, we do find that for some cases, the bubbles do not cause significant departures from the unladen log-law behaviour. Moreover, we show that if departures occur these cannot be understood simply in terms of the averaged void fraction, but that more subtle effects such as the bubble Reynolds number and the competition between the wall-induced turbulence and the bubble-induced turbulence must play a role.  相似文献   

20.
In this paper, a local mesh refinement (LMR) scheme on Cartesian grids for large‐eddy simulations is presented. The approach improves the calculation of ghost cell pressures and velocities and combines LMR with high‐order interpolation schemes at the LMR interface and throughout the rest of the computational domain to ensure smooth and accurate transition of variables between grids of different resolution. The approach is validated for turbulent channel flow and flow over a matrix of wall‐mounted cubes for which reliable numerical and experimental data are available. Comparisons of predicted first‐order and second‐order turbulence statistics with the validation data demonstrated a convincing agreement. Importantly, it is shown that mean streamwise velocities and fluctuating turbulence quantities transition smoothly across coarse‐to‐fine and fine‐to‐coarse interfaces. © 2016 The Authors International Journal for Numerical Methods in Fluids Published by John Wiley & Sons Ltd  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号