首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this note we consider certain two-degree-of-freedom Hamiltonian systems which may be regarded as perturbations of integrable systems governed by a real parameter ε. We wish to study the stability, at fixed energy, of certain periodic solutions. Two constants are defined, computable in terms of the original Hamiltonian function and the energy. The main theorem then states that if these constants are not zero, the periodic solutions are isoenergetically stable for sufficiently small ε. The proof is an application of the Twist Theorem of Kolmogorov-Arnol'd-Moser. By way of illustration, we apply the theorem to a mechanical system consisting of coupled non-linear oscillators. The periodic solutions are the “normal modes” and ε governs the non-linearity of the system. One obtains stability criteria for arbitrary energies and small ε, or, alternatively, for arbitrary ε and small energies.  相似文献   

2.
We set up a numerical strategy for the simulation of the Euler equations, in the framework of finite volume staggered discretizations where numerical densities, energies, and velocities are stored on different locations. The main difficulty relies on the treatment of the total energy, which mixes quantities stored on different grids. The proposed method is strongly inspired, on the one hand, from the kinetic framework for the definition of the numerical fluxes, and, on the other hand, from the discrete duality finite volume (DDFV) framework, which has been designed for the simulation of elliptic equations on complex meshes. The time discretization is explicit and we exhibit stability conditions that guaranty the positivity of the discrete densities and internal energies. Moreover, while the scheme works on the internal energy equation, we can define a discrete total energy which satisfies a local conservation equation. We provide a set of numerical simulations to illustrate the behavior of the scheme.  相似文献   

3.
There have been several papers dealing with elastic discrete supports of structures. And we are interested in what relation there is between elastic discrete supports and continued support and what difference would result in for dynamic properties of structures under the two kinds of support. Through the present analysis, it is pointed out that natural frequencies reflect a certain proportion of kinetic and potential energies in total energy of a system, and the frequencies can be guaranteed to be invariable in transforming between elastic discrete and continued supports by means of a proper energy equivalence. And the theoretical formulation of beams and numerical results of shells of revolution are presented in this paper.  相似文献   

4.
The fundamental nature of the non-linear flow-thermodynamics interactions in a compressible turbulent flow with imposed temperature fluctuations is investigated. Direct numerical simulations (DNS) of decaying anisotropic compressible turbulence (turbulent Mach number 0.06–0.6) with imposed temperature fluctuations are performed to examine: (i) interactions between solenoidal and dilatational kinetic energy; (ii) partition between dilatational kinetic energy and thermodynamic potential energy; and (iii) redistribution of solenoidal and dilatational kinetic energy among the various Reynolds stress components. It is found that solenoidal kinetic energy levels and return-to-isotropy are weakly dependent on Mach number but independent of imposed temperature fluctuations in the parameter range studied. The dilatational kinetic energy generated is proportional to the square of the pressure fluctuations associated with the initial solenoidal and temperature fluctuations and thus a strong function of Mach number and heat release intensity. The energy exchange between dilatational kinetic and potential energy is driven by a strong proclivity toward equipartition. Consequently, the dynamics of pressure-dilatation ( ${\overline{pd}}$ ), which is the mechanism of this energy exchange between dilatational and potential energies, is dictated entirely by the requirement to impose energy equipartition. Based on the results, we provide a physical picture of the solenoidal–dilatational–potential energy interactions and the action of pressure-dilatation. The identification of the fundamental precepts underlying the various interactions is of great utility for turbulence closure model development.  相似文献   

5.
Kinetic and potential energy are included in the first law of thermodynamics in quite a contradictory way. Whereas in thermodynamics the total energy is understood as the sum of internal, kinetic and potential energy, the total energy in continuum mechanics incorporates only internal and kinetic energy, the potential energy being part of the work. The Gibbs ' fundamental equation is also occasionally extendend to contain a term for the potential energy. Some serious contradictions may result from this. As is first shown, kinetic and potential energy do not have any influence on the internal energy as long as relativistic effects are excluded. The Gibbs' fundamental equation therefore describes exchange processes between the “internal variables? of a system and its surroundings. Proceeding from this result one obtains a general definition of heat in open systems, including electromagnetic reactions, surfaceeffects and variable mole numbers. Exchange processes between the “external variables? of a system and its surroundings and hence also the influence of kinetic and potential energy are described by another independent equation, i.e. the energy equation of mechanics. Addition of both equations leads to the heat definition which is usually but under some further neglects given in textbooks. This definition has considerable disadvantages compared to the one derived before. In particular it is no longer possible to realize how mechanical and thermal energy are transformed into each other, which may give rise to errors.  相似文献   

6.
冷压状态方程计算的新方法和材料相图的研究   总被引:2,自引:0,他引:2  
本文运用位力(virial)定理严格地给出了材料的冷压状态方程.本文的理论没有引入对系统势能的任何假定,只需计算系统的总动能,因而在状态方程的研究上得到了新的进展.本文采用了经典TFD统计模型,给出了计算材料状态方程的新方法.此方法可以运用于整个凝聚体系统,从零压开始计算材料各个压缩度下的压力,考虑到经典TFD模型的统计与真实量子力学统计之间的差异.此方法对每种元素的总动能计算作了修正.用此状态方程的新方法计算,可以得到在整个压缩度范围(包括零压附近)压力与实测值一致的冷压状态方程, 对Li,Na,Al,Fe,Ag和U等元素以及Fe-Ni,Al-Cu等二元合金进行了数值计算,结果与实测值符合得较好. 文中还探讨了材料相图的理论研究.冷压状态方程计算的新方法和相图的理论研究将为材料的设计提供依据.   相似文献   

7.
This paper presents a rigorous study, for Fermi–Pasta–Ulam (FPU) chains with large particle numbers, of the formation of a packet of modes with geometrically decaying harmonic energies from an initially excited single low-frequency mode and the metastability of this packet over longer time scales. The analysis uses modulated Fourier expansions in time of solutions to the FPU system, and exploits the existence of almost-invariant energies in the modulation system. The results and techniques apply to the FPU α- and β-models as well as to higher-order nonlinearities. They are valid in the regime of scaling between particle number and total energy in which the FPU system can be viewed as a perturbation to a linear system, considered over time scales that go far beyond standard perturbation theory. Weak non-resonance estimates for the almost-resonant frequencies determine the time scales that can be covered by this analysis.  相似文献   

8.
9.
地下爆炸与介质的能量耦合和介质中的波传播机制是理解地下爆炸源物理的重要基础。为研究地下爆炸辐射地震波能量的传播衰减规律,分析了黏弹性介质中地下爆炸地震波能量的组成。基于无限介质中黏弹性球面波理论,给出了速度、位移、应力、应变等物理量Laplace域的理论解。利用Laplace数值逆求解方法,建立了黏弹性介质中地下爆炸辐射地震波场的计算方法。以干黄土作为典型黏弹性材料,计算给出了地震波能量的传播特征,分析了地下爆炸辐射能量的传播衰减规律。结果表明:(1)在黏弹性介质中,某球面处流入的能量随半径增加而逐渐降低。在理想弹性介质中,某球面处流入的能量在几倍弹性半径外即可稳定到某一定值;(2)在某一固定的有限观测区域内,当观测时间足够长时,势能和耗散能均趋于某一定值,辐射动能趋于零;(3)当有限的观测区域能容纳一个完整波长的地震波时,地震波辐射动能的稳态值随波传播距离的增大而减小,总体上可以用指数函数和幂函数进行分段拟合。  相似文献   

10.
In the works of Pericak-Spector and Spector (Arch Rational Mech Anal. 101:293–317, 1988, Proc. Royal Soc. Edinburgh Sect A 127:837–857, 1997) a class of self-similar solutions are constructed for the equations of radial isotropic elastodynamics that describe cavitating solutions. Cavitating solutions decrease the total mechanical energy and provide a striking example of non-uniqueness of entropy weak solutions (for polyconvex energies) due to point-singularities at the cavity. To resolve this paradox, we introduce the concept of singular limiting induced from continuum solution (or slic-solution), according to which a discontinuous motion is a slic-solution if its averages form a family of smooth approximate solutions to the problem. It turns out that there is an energetic cost for creating the cavity, which is captured by the notion of slic-solution but neglected by the usual entropic weak solutions. Once this cost is accounted for, the total mechanical energy of the cavitating solution is in fact larger than that of the homogeneously deformed state. We also apply the notion of slic-solutions to a one-dimensional example describing the onset of fracture, and to gas dynamics in Langrangean coordinates with Riemann data inducing vacuum in the wave fan.  相似文献   

11.

Perpetual points in mathematics defined recently, and their significance in nonlinear dynamics and their application in mechanical systems is currently ongoing research. The perpetual points significance relevant to mechanics so far is that they form the perpetual manifolds of rigid body motions of unforced mechanical systems, which lead to the definition of perpetual mechanical systems. The perpetual mechanical systems admit as perpetual points rigid body motions which are forming the perpetual manifolds. The concept of perpetual manifolds extended to the definition of augmented perpetual manifolds that an externally excited multi-degree of freedom mechanical system is moving as a rigid body, and may exhibit particle-wave motion. This article is complementary to the work done so far applied to natural perpetual dissipative mechanical systems with motion defined by the exact augmented perpetual manifolds, whereas the internal forces, and individual energies are examined, to understand further the mechanics of these systems while their motion is in the exact augmented perpetual manifolds. A theorem is proved stating that under conditions when the motion of a perpetual natural dissipative mechanical system is in the exact augmented perpetual manifolds, all the internal forces are zero, which is rather significant in the mechanics of these systems since the operation on augmented perpetual manifolds leads to zero internal degradation. Moreover, the theorem is stating that the potential energy is constant, and there is no dissipation of energy, therefore the process is internally isentropic, and there is no energy loss within the perpetual mechanical system. Also in this theorem is proved that the external work done is equal to the changes of the kinetic energy, therefore the motion in the exact augmented perpetual manifolds is driven only by the changes of the kinetic energy. This is also a significant outcome to understand the mechanics of perpetual mechanical systems while it is in particle-wave motion which is guided by kinetic energy changes. In the final statement of the theorem is stated and proved that the perpetual dissipative mechanical system can behave as a perpetual machine of third kind which is rather significant in mechanical engineering. Noting that the perpetual mechanical system apart of the augmented perpetual manifolds solutions is having other solutions too, e.g., in higher normal modes and in these solutions the theorem is not valid. The developed theory is applied in the only two possible configurations that a mechanical system can have. The first configuration is a perpetual mechanical system without any connection through structural elements with the environment. In the second configuration, the perpetual mechanical system is a subsystem, connected with structural elements with the environment. In both examples, the motion in the exact augmented perpetual manifolds is examined with the view of mechanics defined by the theorem, resulting in excellent agreement between theory and numerical simulations. The outcome of this article is significant in physics to understand the mechanics of the motion of perpetual mechanical systems in the exact augmented perpetual manifolds, which is described through the kinetic energy changes and this gives further insight into the mechanics of particle-wave motions. Also, in mechanical engineering the outcome of this article is significant, because it is shown that the motion of the perpetual mechanical systems in the exact augmented perpetual manifolds is the ultimate, in the sense that there are no internal forces which lead to degradation of the internal structural elements, and there is no energy loss due to dissipation.

  相似文献   

12.
基于力学屈曲原理的褶皱薄膜-基底结构已成功应用于制备可延展无机电子器件。然而,该类电子器件在应用时需要服役于复杂动态环境中,针对棋盘形褶皱薄膜结构的动力学问题鲜有研究,此问题又是该类电子器件走向实际应用需要解决的关键问题之一。本文首先采用能量方法,分别计算了二维薄膜的弯曲能、膜弹性能和柔性基底中的弹性能以及薄膜动能;然后采用拉格朗日方程,推导出了该结构的振动控制方程;而该方程为非线性动力学方程,无法给出其解析解;因此,本文采用辛Runge-Kutta方法对其进行数值求解;数值结果表明,辛数值方法具有长期稳定的特性和系统结构特性,为高精度的可延展电子器件的动力学问题研究提供了优异的数值方法。  相似文献   

13.
We study here the thermally-induced martensitic transformation process of shape memory alloys. Taking the internal energy of phase mixtures as the potential function and introducing coherency energies between martensite and austenite and between different variants of the martensitic phase, we are able to use thermodynamical arguments to obtain hysteresis diagrams which could be measured experimentally. The characteristic temperatures for martensitic transformation, (martensite start and finish) and (austenite start and finish) can be identified explicitly and are closely related to the coherency parameters of the coherency energies. Received September 12, 1997  相似文献   

14.
We consider a system arising in the study of phase transitions in elastodynamics – a system of two conservation laws, in a single space dimension. The system has two hyperbolic regions with an elliptic zone in between. A phase boundary is a strong discontinuity in a solution, with left and right states belonging to different hyperbolic regions. We call such a solution a phase wave. We first address the Riemann problem for initial states close to a fixed sonic phase wave, in the genuinely nonlinear case. This problem is naturally underdetermined. We propose two essentially different types of Reimann problems: a sonic one, which is smooth, and a kinetic one, which is only Lipschitz-continuous. Both problems are well posed owing to a shared stability condition that is of a purely sonic nature. In the kinetic case we prove the global existence of solutions to the Cauchy problem for initial data having small variation and close to a sonic kinetic wave. The crucial issue is the interaction of the phase boundary with a small wave of the same mode. The introduction of a pertinent quantity, called here detonation potential, ensures a balance between ingoing and outgoing waves. The proof is based on a Glimm-type scheme; we define a potential, which includes the detonation potential, along the strong discontinuity, and this potential controls the outbreak of unusual shocks. Accepted: June 9, 1999  相似文献   

15.
Two recently proposed Helmholtz free energy potentials including the full dislocation density tensor as an argument within the framework of strain gradient plasticity are used to predict the cyclic elastoplastic response of periodic laminate microstructures. First, a rank-one defect energy is considered, allowing for a size-effect on the overall yield strength of micro-heterogeneous materials. As a second candidate, a logarithmic defect energy is investigated, which is motivated by the work of Groma et al. (2003). The properties of the back-stress arising from both energies are investigated in the case of a laminate microstructure for which analytical as well as numerical solutions are derived. In this context, a new regularization technique for the numerical treatment of the rank-one potential is presented based on an incremental potential involving Lagrange multipliers. The results illustrate the effect of the two energies on the macroscopic size-dependent stress–strain response in monotonic and cyclic shear loading, as well as the arising pile-up distributions. Under cyclic loading, stress–strain hysteresis loops with inflections are predicted by both models. The logarithmic potential is shown to provide a continuum formulation of Asaro's type III kinematic hardening model. Experimental evidence in the literature of such loops with inflections in two-phased FFC alloys is provided, showing that the proposed strain gradient models reflect the occurrence of reversible plasticity phenomena under reverse loading.  相似文献   

16.
First, as an introduction, using the author’s published references, a short survey of an analytical study of the energy transfer between two coupled subsystems, as well as between a linear and nonlinear oscillators of a hybrid system, in the free and forced vibrations of a different type of inter connections between subsystems is presented. Second, as author’s new research result, an analytical study of the energy transfer between two coupled like-string belts interconnected by light pure elastic layer in the axially moving sandwich double belt system, in the free vibrations is presented. On the basis of the obtained analytical expressions for the kinetic and potential energy of the belts and potential energy of the of light pure elastic distributed layer numerous conclusions are derived. In the pure linear elastic double belt system no transfer energy between different eigen modes of transversal vibrations of the axially moving double belt system, but in every from of the set of the infinite numbers eigen modes, there are transfer energy between belts. Each of the eigen modes of the free transversal vibrations are like two-frequency. The change of the potential energy of the booth belts is four frequency, and interaction part of the potential energy is one frequency in the each eigen mode. Changes of the kinetic energy of the both belts of the sandwich double axially moving bet system is two frequency like oscillatory regimes with two time multiplicities of the eineg frequencies of the corresponding eigen amplitude mode.  相似文献   

17.
Self-collapse of carbon nanotubes may prominently affect their electrical properties and holds promise for important applications in the emerging nano-mechanical or electronic systems. Based upon the potential energy functional, we derived the governing equation and transversality boundary condition for a collapsed single-walled carbon nanotube (SWCNT). Considering the inextensible condition of the elastica, some closed-form solutions for the collapsed configuration were obtained in terms of elliptical integrals. These analytical solutions include the critical length of the flat contact segment, critical radii for collapsed and circular shapes of the cross-section, deflections and potential energies of the SWCNTs. Finally, the energy states and the collapsed morphologies of the SWCNTs were presented. These explicit solutions are beneficial for the design of nano-structured materials, and cast a light on enhancing their mechanical, chemical, optical and electronic properties.  相似文献   

18.
The evolution of heat in crystalline solids is described at low temperatures by the Boltzmann-Peierls equation, which is a kinetic equation for the phase density of phonons.In this study, we solve initial value problems for the Boltzmann-Peierls equation in relation to the following issues: In thermodynamics, a given kinetic equation is usually replaced by a truncated moment system, which in turn is supplemented by a closure principle so that a system of PDEs results for some moments as thermodynamic variables. A very popular closure principle is the maximum entropy principle, which yields a symmetric hyperbolic system. In recent times, this strategy has led to serious studies on two problems that might arise: 1. Do solutions of the maximum entropy principle exist? 2. Is the physics that is embodied by the kinetic equation more or less equivalently displayed by the truncated moment system? It was Junk who proved for the BOLTZMANN equation of gases that maximum entropy solutions do not exist. The same failure appears for the Fokker-Planck equation, which was proved by means of explicit solutions by Dreyer, Junk, and Kunik.This study has two main objectives:1. We give a positive existence result for the maximum entropy principle if the underlying kinetic equation is the Boltzmann-Peierls equation. In other words we show that the maximum entropy principle can be used here to establish a closed hyperbolic moment system of PDEs. However, the intent of the paper is by no means a general justification of the maximum entropy principle.2. We develop an approximative method that allows the solutions of the kinetic equations to be compared with the solutions of the hyperbolic moment systems. To this end we introduce kinetic schemes that consists of free flight periods and two classes of update rules. The first class of rules is the same for the kinetic equation as well as for the maximum entropy system, while the second class of update rules contains additional rules for the maximum entropy system. It is shown that if a sufficient number of moments are taken into account, the two solutions converge to each other. However, in terms of numerical effort, the presented solver for the kinetic equation clearly outperforms the one for the maximum entropy principle.Received: 15 August 2003, Accepted: 8 November 2003, Published online: 11 February 2004PACS: 02.30.Jr, 02.60.Cb, 05.30.Jp, 44.10. + i, 63.20.-e, 66.70. + f, 65.40.Gr Correspondence to: M. Herrmann  相似文献   

19.
The aim of this article is to analyse travelling waves for a lattice model of phase transitions, specifically the Fermi–Pasta–Ulam chain with piecewise quadratic interaction potential. First, for fixed, sufficiently large subsonic wave speeds, we rigorously prove the existence of a family of travelling wave solutions. Second, it is shown that this family of solutions gives rise to a kinetic relation which depends on the jump in the oscillatory energy in the solution tails. Third, our constructive approach provides a very good approximate travelling wave solution.  相似文献   

20.
A two-dimensional continuum model with couple stress for a gridwork-reinforced composite is developed. The derivation is based on the calculation of equivalent potential and kinetic energies stored in the representative medium. Hamilton's principle is used to derive the equations of motion and the boundary conditions. Deformation variables are defined and the constitutive relations are subsequently derived. The in-plane transverse vibration problem is investigated as an evaluation example for which both the continuum approach and the discrete element method are employed to compute the frequencies. Numerical results show that solutions according to both methods agree reasonably well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号