首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A rapid and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method has been developed and validated for the estimation of amlodipine in human plasma. Amlodipine was extracted from human plasma by using a solid-phase extraction technique. Imipramine was used as the internal standard. A Hypersil BDS C18 column provided chromatographic separation of analytes followed by detection with mass spectrometry. The method involves a rapid solid-phase extraction from plasma, simple isocratic chromatography conditions and mass spectrometric detection that enables detection at sub-nanogram levels. The proposed method has been validated for a linear range of 0.1-10.0 ng/mL with correlation coefficient >or=0.9990. The intrarun and interrun precision and accuracy were within 10.0%. The overall recovery for amlodipine was 63.67%. Total run time was 3.2 min only.  相似文献   

2.
Osthole, a major component isolated from the fruit of Cnidium monnieri (L.) Cusson, has been widely used in traditional Chinese medicine. We developed and validated a rapid and sensitive LC‐MS/MS method for the quantification of osthole in rat plasma. Sample preparation involved simple liquid–liquid extraction by ethyl acetate after addition of imperatorin as internal standard (IS). The analyte was separated using a C18 column with the mobile phase of methanol–0.1% formic acid (80:20, v/v) at a flow rate of 0.4 mL/min. The elutes were detected under positive electrospray ionization in multiple reaction monitoring mode. The method was sensitive with 0.5 ng/mL as the lower limit of detection. Good linearity was obtained over the range of 1.0–500.0 ng/mL. The intra and inter‐batch accuracy for osthole in rat plasma samples ranged from 99.5 to 108.1% and the variation was <8.9%. The stability, extraction efficiency and matrix effect were also acceptable. This method was successfully applied to the pharmacokinetic study of osthole in rat after intravenous and oral administration. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
A rapid and sensitive method using liquid chromatography-tandem mass spectroscopy (LC-MS/MS) was developed and validated for the quantitative determination of cynandione A in rat plasma and tissues. The plasma samples were pretreated by liquid-liquid extraction with ethyl acetate after the internal standard (honokiol) had been spiked. The tissue samples were homogenized with physiological saline and treated further like the plasma samples. The separation was performed using a Zorbax SB-C(18) column (3.5 microm, 2.1 x 100 mm) and a C18 guard column (5 microm, 4.0 x 2.0 mm) with an isocratic mobile phase consisting of methanol-0.1% formic acid (78:22, v/v) at a flow rate of 0.2 mL/min. The Agilent G6410A triple quadrupole LC/MS system was operated under the multiple-reaction monitoring mode using the electrospray ionization technique in negative mode. The nominal retention times for cynandione A and honokiol were 1.41 and 2.63 min, respectively. The method was validated within the concentration range 0.2-1000 ng/mL in plasma and homogenized tissue for cynandione A, and the calibration curves were linear with correlation coefficients >0.992. The lower limit of quantification of cynandione A was 0.2 ng/mL. The intra-day and inter-day precision and accuracy of the assay in plasma were less than 14.4%, while the intra-day and inter-day precision and accuracy of the assay in tissue homogenate were less than 14.2%. This method proved to be suitable for study of pharmacokinetics and tissue distribution of cynandione A in rat.  相似文献   

4.
A rapid, simple and sensitive LC‐MS/MS method for the quantification of vinflunine in plasma was developed and validated. The analysis involved a simple liquid–liquid extraction. After making alkaline with NaOH, plasma was extracted with methyl tert‐butyl ether and the organic extract was then evaporated and the residue was reconstituted in mobile phase. The reconstituted solution was injected into an HPLC system and was subjected to reverse‐phase HPLC on a 5 µm ODS‐3 column at a flow‐rate of 0.2 mL/min. The mobile phase consisted of ammonium acetate (0.02 mol/L, pH = 3.0) and acetonitrile (20:80). Vinflunine was detected in the single ion monitoring mode using target ions at m/z 817.4/160.1/142.3 for vinflunine and m/z 447.2/128.3/112.1 for gefitinib (internal standard). Standard curves were linear over the concentration range of 5–1000 ng/mL. The mean predicted concentrations of the quality control samples deviated by less than 2% from the corresponding nominal values; the intra‐assay and inter‐assay precisions of the assay were within 7% relative standard deviation. The extraction recovery of vinflunine was more than 80%. The validated assay was applied to a pharmacokinetic study of vinflunine in plasma following the administration of a single vinflunine injection (2 mg/kg). Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
A sensitive, rapid and robust HPLC method with tandem mass spectrometry (HPLC/MS/MS) detection has been developed and validated for the quantification of sotalol in rat plasma. Plasma samples were precipitated with acetonitrile before analysis. The chromatographic separation was performed on an Atlantis hydrophilic interaction liquid chromatography Silica column (50 × 2.1 mm, 3 µm) with a gradient mobile phase of 10 mm NH4COOH (containing 0.2% of formic acid) as buffer A and acetonitrile as mobile phase B. Sotalol (m/z 273.2 → 255.1) and atenolol (the internal standard, IS, m/z 267.2 → 190.1) were monitored under positive ionization mode with 5500 QTRAP. Retention time of sotalol and the IS were 2.69 and 3.43 min, respectively. The linear range was 5–500 nm based on the analysis of 0.1 mL of plasma. The intrabatch precision ranged from 1.2 to 6.1%, and the inter‐batch precision was from 3.3 to 6.5%. The coefficient of variation of IS‐normalized matrix factor was 7.6%. Experiments for stability were performed and the analyte was sufficiently stable. A run time of 6 min for each injection made it possible to analyze a high throughput of plasma samples. The assay was successfully applied to the determination of sotalol in rat plasma after a micro‐dose oral administration. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
A rapid, specific and sensitive LC-MS/MS assay using solid-phase extraction (SPE) for the determination of pravastatin, in human plasma is described. The plasma filtrate obtained after SPE, using a polymer base, a hydrophilic-lipophilic balance (HLB) cartridge, was submitted directly to short-column liquid chromatography-tandem mass spectrometric (LC-MS/MS) assay, with negligible matrix effect on the analysis. For validation of the method, the recovery of the free analytes was compared with that from an optimized extraction method, and the analyte stability was examined under conditions mimicking the sample storage, handling, and analysis procedures. The extraction procedure yielded extremely clean extracts with a recovery of 107.44 and 98.93% for pravastatin and IS, respectively. The intra-assay and inter-assay precisions for the samples at the LLOQ were 3.30 and 7.31% respectively. The calibration curves were linear for the dynamic range 0.5-200 ng/mL with correlation coefficient r > or = 0.9988. The intra- and inter-assay accuracy ranged from 95.87 to 112.40%. The method is simple and reliable with a total run time of 3 min. This novel validated method was applied to the pharmacokinetic (PK) study in human volunteers receiving a single oral dose of 40 mg immediate release (IR) formulation.  相似文献   

7.
A highly sensitive and rapid assay method has been developed and validated for the estimation of S‐(−)‐raclopride (S‐RCP) in rat plasma with liquid chromatography coupled to tandem mass spectrometry with electrospray ionization in the positive ion mode. The assay procedure involves a simple liquid–liquid extraction technique for extraction of S‐RCP and phenacetin (internal standard, IS) from rat plasma. Chromatographic separation was achieved with 0.2% formic acid : acetonitrile (80:20, v/v) at a flow rate of 0.30 mL/min on a Phenomenex Prodigy C18 column with a total run time of 4.5 min. The MS/MS ion transitions monitored were 347.2 → 112.1 for S‐RCP and 180.1 → 110.1 for IS. Method validation and pre‐clinical sample analysis were performed as per FDA guidelines and the results met the acceptance criteria. The lower limit of quantitation achieved was 0.05 ng/mL and the linearity range was extended from 0.05 to 152 ng/mL in rat plasma. The intra‐day and inter‐day precisions were 0.23–10.5 and 3.74–7.29%, respectively. This novel method was applied to a pharmacokinetic study of S‐RCP in rats. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
A rapid and sensitive liquid chromatography–tandem mass spectrometric (LC‐MS/MS) assay method has been developed and fully validated for simultaneous quantification of donepezil and its active metabolite, 6‐o‐desmethyl donepezil in human plasma. Analytes and the internal standard were extracted from human plasma by liquid–liquid extraction technique using a 30:70 v/v mixture of ethyl acetate and n‐hexane. The reconstituted samples were chromatographed on a C18 column by using a 70:30 v/v mixture of acetonitrile and ammonium formate (5 mm , pH 5.0) as the mobile phase at a flow rate of 0.6 mL/min. The calibration curve obtained was linear (r ≥ 0.99) over the concentration range of 0.09–24.2 ng/mL for donepezil and 0.03–8.13 ng/mL for 6‐o‐desmethyl donepezil. The results of the intra‐day and inter‐day precision and accuracy studies were well within the acceptable limits. The proposed method was successfully applied for the estimation of the drug in real time plasma samples for pharmacokinetic studies. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
采用反相高效液相色谱(RP-HPLC-UV)和电喷雾飞行时间质谱(ESI-TOF/MS)、大气压化学电离质谱(APCI-MS),分析烟叶中的茄尼醇.使用反相G4色谱柱,以V(甲醇):V(水)=9:1为流动相,茄尼醇和烟草中的其它成分分离良好;茄尼醇在ESI正离子全范围扫描中主要形成[M-H2O H] 和[M NH4] 离子,只有微弱的[M H] 离子,同时会产生一些碎片离子;而在APCI正离子全范围扫描中主要形成[M-H2O H] 离子,检测不到[M H] 离子,碎片离子也很少;通过对茄尼醇的ESI-TOF/MS和APCI-MS的质谱分析特征比较可以发现,茄尼醇在ESI源分析中的信号强度远远小于在APCI源分析中的信号强度,说明APCI源更适于茄尼醇的定量分析.  相似文献   

10.
Tetramethylpyrazine (TMP) is one of the most important active ingredients of a Chinese herb Ligusticum wallichii Franchat, which is widely used for the treatment of cardiovascular diseases. Several factors may affect TMP exposure after topical administration, resulting in large variability and demanding further elucidation of drug distribution. This paper describes a new efficient reliable LC‐MS/MS assay for the determination of TMP in dermal microdialysate, where TMP was separated on an Agilent C18 column (3.5 µm, 100 mm × 2.1 mm i.d.) using a mixture of methanol, water and acetic acid (50:50:0.6, v/v/v) at a flow‐rate of 0.3 mL/min. The retention time was 1.89 min for TMP and 1.17 min for the internal standard (caffeine). Histological analysis confirmed an inflammatory response to the microdialysis probes and the presence of a collagen capsule. The membrane extraction efficiency (percentage delivered to the tissue space) for TMP was not altered through the implant lifetime. The validation and sample analysis results showed that the method is precise, accurate and well suited to support dermal microdialysis experiments. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
A simple, rapid and accurate liquid chromatography-tandem mass spectrometry method has been developed. After a liquid-liquid extraction procedure, samples were chromatographed on an Agilent TC-C(18) (150 × 4.6 mm, 5 μm) column using an isocratic elution mobile phase composed of methanol and distilled water (70:30, v/v) at a flow rate of 0.5 mL/min. After single-dose administration of 0.5, 1 and 2 mg metolazone, the t(1/2) values were 6.6 ± 2.8, 7.9 ± 1.2 and 7.6 ± 1.9 h, respectively. The pharmacokinetic parameters of multiple doses (1 mg metolazone) were as follows: t(1/2) was 8.9 ± 1.0 h; C(max) was 22.4 ± 5.0 ng/mL; and AUC(0-48) was 156.8 ± 31.6 ng h/mL.  相似文献   

12.
A high‐performance liquid chromatographic assay with tandem mass spectrometric detection was developed to simultaneously quantify fluoxetine and olanzapine in human plasma. The analytes and the internal standard (IS) duloxetine were extracted from 500 μL aliquots of human plasma through solid‐phase extraction. Chromatographic separation was achieved in a run time of 4.0 min on a Hypersil Gold C18 column (50 × 4.6 mm, 5 µm) using isocratic mobile phase consisting of acetonitrile–water containing 2% formic acid (70:30, v/v), at a flow‐rate of 0.5 mL/min. Detection of analytes and internal standard was performed by electrospray ionization tandem mass spectrometry, operating in positive‐ion and multiple reaction monitoring acquisition mode. The protonated precursor to product ion transitions monitored for fluoxetine, olanzapine and IS were m/z 310.01 → 147.69, 313.15 → 256.14 and 298.1 → 153.97, respectively. The method was validated over the concentration range of 1.00–150.20 ng/mL for fluoxetine and 0.12–25.03 ng/mL for olanzapine in human plasma. The intra‐batch and inter‐batch precision (%CV) across four quality control levels was ≤6.28% for both the analytes. In conclusion, a simple and sensitive analytical method was developed and validated in human plasma. This method is suitable for measuring accurate plasma concentration in bioequivalence study and therapeutic drug monitoring as well, following combined administration. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
A simple, sensitive and specific liquid chromatography–tandem mass spectrometry method was developed and validated for the determination of Pulsatilla saponin D, a potential antitumor constituent isolated from Pulsatilla chinensis in rat plasma. Rat plasma samples were pretreated by protein precipitation with methanol. The method validation was performed in accordance with US Food and Drug Administration guidelines and the results met the acceptance criteria. The method was successfully applied to assess the pharmacokinetics and oral bioavailability of Pulsatilla saponin D in rats. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
建立了卷烟丝中烟草特有亚硝胺类化合物(TSNAs)的SPE-LC/MS/MS分析方法,可一次性对卷烟烟丝中4种TSNAs进行定量分析.该方法弥补了传统的烟丝中TSNAs分析方法样品处理步骤多,检出限高,适应范围窄等缺点.4种TSNA的回收率的范围在95.7%~99.2%之间;相对标准偏差均小于8%;方法检出限均低于1.0 ng/g.可应用于国内外各类型卷烟的分析.  相似文献   

15.
A solid‐phase extraction–liquid chromatographic–tandem mass spectrometry method for the determination of nalbuphine concentrations in human plasma has been developed. Samples (1 mL) were extracted using a Strata™‐X solid phase extraction cartridges. Chromatographic separation of nalbuphine and naloxone (internal standard) was achieved on a Phenomenex Kinetex PFP (2.6 μm, 100 A, 100 × 2.1 mm) column using a mobile phase consisting of 0.1% formic acid, 15 mM ammonium acetate in deionized water and acetonitrile (60:40, v/v). The flow rate was 0.3 mL/min and the total run time was 2 min. Detection of the analytes was achieved using positive ion electrospray ionization via multiple reactions monitoring mode. The mass transitions were m/z 358 → 340 for nalbuphine and m/z 328 → 310 for naloxone. The assay was linear over the concentration range 0.50–500.00 ng/mL, with correlation coefficients ≥0.995. The lower limit of quantitation was set at 0.5 ng/mL plasma based on an average signal‐to‐noise ratio of 44.79. The intra‐ and inter‐day precision was less than 8.07% in terms of relative standard deviation and accuracy ranged from 94.97 to 106.29% at all quality control levels. The method was applied successfully to determine nalbuphine concentrations in human plasma samples obtained from subjects receiving intravenous administration of nalbuphine. The method is rapid, sensitive, selective and directly applicable to human pharmacokinetic studies involving nalbuphine. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
A highly sensitive simultaneous quantitative method for a cassette cold-microdosing study on celiprolol and atenolol was developed with liquid chromatography-tandem mass spectrometry. The method utilizes a combination of solid-phase extraction (SPE) with strong cation exchange (SCX) cartridge columns and reversed-phase chromatography with an ODS analytical column. SCX-SPE cartridge columns (100 mg sorbent) were used for a selective extraction of celiprolol, atenolol and metoprolol (internal standard) from 500 μL of human plasma samples. Turbo-ion spray at positive mode was employed for the ionization of the drug compounds. Quantitation was performed on a triple quadrupole mass spectrometer by selected reaction monitoring with the transitions of m/z 380 to m/z 251 for celiprolol and m/z 267 to m/z 145 for atenolol. Separation of analytes was achieved on an ODS column (100 mm length × 2.1 mm id, 3 μm) by a gradient elution with 10 mM formic acid and methanol by varying their proportion at a flow rate of 0.2 mL/min. The method was validated in the range of 1-250 pg/mL for celiprolol and 2.5-250 pg/mL for atenolol and was successfully applied to the elucidation of pharmacokinetic profiling in a cold cassette microdosing study of the β-blockers.  相似文献   

17.
A highly reproducible, specific and cost-effective LC-MS/MS method was developed for simultaneous estimation of eszopiclone (ESZ) with 50 μL of human plasma using paroxetine as an internal standard (IS). The API-4000 LC-MS/MS was operated under the multiple reaction-monitoring mode using the electrospray ionization technique. A simple liquid-liquid extraction process was used to extract ESZ and IS from human plasma. The total run time was 1.5 min and the elution of ESZ and IS occurred at 0.90 min; this was achieved with a mobile phase consisting of 0.1% formic acid-methanol (15:85, v/v) at a flow rate of 0.50 mL/min on a Discover C(18) (50 × 4.6 mm, 5 μm) column. The developed method was validated in human plasma with a lower limit of quantitation of 0.1 ng/mL for ESZ. A linear response function was established for the range of concentrations 0.10-120 ng/mL (r > 0.998) for ESZ. The intra- and inter-day precision values for ESZ were acceptable as per FDA guidelines. Eszopiclone was stable in the battery of stability studies, viz. bench-top, autosampler and freeze-thaw cycles. The developed assay method was applied to an oral bioequivalence study in humans.  相似文献   

18.
A sensitive LC/MS/MS assay for determining zidovudine (ZDV) and lamivudine (3TC) in human plasma was validated to support antiretroviral pharmacology research programs. After addition of stable labeled isotopic zidovudine (ZDV‐IS) and lamivudine (3TC‐IS) as internal standard, a solid‐phase extraction was performed with an Oasis HLB 1 cm3 cartridge, with recoveries of 92.3% for ZDV and 93.9% for 3TC. A Phenomonex Synergi Hydro‐RP (2.0 × 150 mm) reversed‐phase analytical column was utilized for chromatographic separation. The mobile phase consisted of an aqueous solution of 15% acetonitrile and 0.1% acetic acid. Detection was accomplished by ESI/MS/MS in the positive ion mode, monitoring 268/127, 271/130, 230/112 and 233/115 transitions, for ZDV, ZDV‐IS, 3TC and 3TC‐IS, respectively. The method was linear from 1 to 3000 ng/mL with a minimum quantifiable limit of 1 ng/mL when 100 μL of plasma was analyzed. Validation results demonstrated high accuracy (≤8.3% deviation) and high precision (≤10% CV) for the quality control samples. The method was also shown to be specific and reproducible. The value of the high sensitivity was demonstrated by quantitation of approximately 100 existing samples that had ZDV below the limit of quantitation using a previously validated, less sensitive HPLC‐UV method utilized in the laboratory. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
A high‐sensitivity ultra‐performance liquid‐chromatography (UPLC) coupled with tandem mass spectrometric method was developed for simultaneous quantification and confirmation of triptolide in both zebrafish embryos and the aqueous‐exposure solution on a tandem quadrupole mass spectrometer (TQ‐MS). This was achieved by performing quantification using the multiple reaction monitoring (MRM) acquisition with simultaneous characterization of the MRM peak using product ion confirmation (PIC) acquisition as it elutes from the chromatographic system. Separation was achieved on a 1.7 µm C18 UPLC column using 0.1% formic acid water–acetonitrile mobile phase with a cycle time of 6 min. The linear range of 0.115–360 ng/mL, and lower limits of detection of 0.02 ng/mL and quantification of 0.064 ng/mL were established. This method was successfully applied to determine the time course of triptolide absorption by zebrafish embryos and the amount of triptolide remaining in the culture medium after administration of two triptolide dosages at three time points. This coupled MRM with PIC approach could provide both qualitative and quantitative results without the need for repetitive analyses. This resulted in the reduction of further confirmative experiments and analytical time, and ultimately increased laboratory productivity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Brazilin is a major homoisoflavonoid component isolated from the dried heartwood of traditional Chinese medicine Caesalpinia sappan L., which is a natural red pigment used for histological staining. Herein a sensitive, specific and rapid analytical LC‐MS/MS method was established and validated for brazilin in rat plasma. After a simple step of protein precipitation using acetonitrile, plasma samples were analyzed using an LC‐MS/MS system. Brazilin and the IS (protosappanin B) were separated on a Diamonsil C18 analytical column (150 × 4.6 mm, 5 µm) using a mixture of water and 10 mm ammonium acetate in methanol (20:80, v/v) as mobile phase at a flow rate of 0.6 mL/min. The method was sensitive with a lower limit of quantitation of 10.0 ng/mL, with good linearity (r2 ≥ 0.99) over the linear range 10.0–5000 ng/mL. All the validation data, such as accuracy and precision, matrix effect, extraction recovery and stability tests were within the required limits. The assay method was successfully applied to evaluate the pharmacokinetics parameters of brazilin after an oral dose of 100 mg/kg brazilin in rats. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号