首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new HPLC-UV-Vis method for identification of drying oils from binding media or protective film used in pictorial works of art prior to conservation or restoration is proposed. Chromophore derivatization of fatty acids released by hydrolysis of structural drying oils is studied. The derivatization reagent selected was 2-nitrophenylhydrazine with 1-ethyl-3-(3-dimethyl animopropyl)carbodiimide hydrochloride/pyridine as catalyst. This reaction was carried out using microwave heating. Mobile phase was methanol/water/n-propanol/acetic acid (80:14:5:1) running in isocratic mode. Absorbance was measured at 400 nm. In these conditions, hydrazides of myristic, palmitic, oleic, and stearic acids were satisfactorily resolved. Method shows good sensitivity, with a detection limit of 15 μmol l−1, and good linearity between 0.03 and 3 mmol l−1. Peak area ratios among fatty acids derivatives allows identification of the drying oils. The stearic/palmitic ratio is the most important, because it allows to differentiate among the different drying oils. The proposed method has been successfully applied to real samples from items of the cultural heritage of Valencia (Spain).  相似文献   

2.
A HPLC-fluorescence method for identification of drying oils from binding media or protective film used in pictorial works of art prior to conservation or restoration is proposed. Fluorescence derivatization of fatty acids released by hydrolysis of structural drying oils is studied. The derivatization reagent was 4-(bromomethyl)-7-methoxycoumarin with 18-crown-6 as catalyst. Mobile phase was programmed from methanol-water (90:10 v/v) to methanol-water (100:0 v/v) in 25 min. The excitation and emission wavelengths were 325 and 395 nm, respectively. Under these chromatographic conditions, coumarin derivatives of myristic, palmitic, oleic and stearic acids were satisfactorily resolved. The method shows good sensitivity, with a detection limit of 6.0 x 10(-8) mmol, and good linearity between 1.0 x 10(-7) and 1.8 x 10(-4) mmol of each analyte. Peak area ratios among fatty acids derivatives, especially the stearic acid/palmitic acid peak area ratio, are useful to identify the drying oils. The proposed method has been successfully applied to artistic samples from items of the cultural heritage of Valencia (Spain).  相似文献   

3.
In this paper, ultrasonic-assisted extraction of 3-chloropropane-1,2-diol and its esters from edible oils was studied with isotope dilution GC-MS. Effects of several experimental parameters, such as types and concentrations of extracting solvent, ratios of liquid to material, extraction temperature, time of ultrasonic treatment on the extraction efficiency of 3-chloropropane-1,2-diol and its esters from edible oils and sample preparation for calibration were compared and optimized. The optimal extraction conditions were suggested as 66 mg oil sample in mixture of 0.5 mL MTBE/ethyl acetate (20% v/v) and 0.5 mL of sulfuric acid/n-propanol (0.3% v/v), being extracted for 30 min at 45°C under ultrasonic irradiation. Good linearity was gained in the range of 0.020-5.000 μg/g with the limit of detection (LOD) of 0.006 μg/g (S/N = 3) and the limit of quantification (LOQ) of 0.020 μg/g (S/N = 10). The recoveries at five spiked concentrations were ranged from 91.9 to 109.3% with RSD less than 9.4%. The method was successfully applied to the determination of 3-chloropropane-1,2-diol and its esters amounts in rapeseed, sesame, peanut, camellia, and soybean oils.  相似文献   

4.
The influence of the presence and the type of pigments in the lipid binding media of paintings were studied by gas chromatography with flame ionization detector. The drying oils were linseed stand oil, poppy oil and sunflower oil, and the pigments studied were cadmium red, cobalt blue, tin white, lead white, chalk and plaster of Paris, commonly used in paintings. The results indicate that the stearic/palmitic ratio and the presence of pigments are quite stable during ageing. However, some differences in the oleic acid/palmitic acid ratio were found, depending on the type of pigment present in the lipid binding media. These variations are related to the drying effect of the pigments. The proposed method has been applied to the identification of drying oils in two samples from baroque paintings in the "Basilica de la Virgen de los Desamparados" of Valencia, Spain.  相似文献   

5.
Reversed phase HPLC with short wavelength UV detection is a useful alternative to conventional separation systems, with RI detection, for the analysis of the triacylglycerols of highly unsaturated vegetable oils, including γ-linolenic acid-containing oils and technical drying oils. γ-Linolenic acid-containing triacylglycerols can be identified and separated from their α-linolenic analogs. The triacylglycerol fingerprints obtained by this technique from many γ-linolenic acid-containing oils and technical oils are highly characteristic, as is apparent from chromatograms obtained from the seed oils of Oenothera biennis, Borago officinalis, Ribes nigrum, Primula florindae, and Sapium sebiferum. Characteristic peak area ratios aid the identification of these oils, and estolide peaks are seen in Sapium seed kernel oils. The high detector response for triacylglycerols containing linoleate and/or linolenate residues may present additional advantages, e.g. in the detection of such triacylglycerols in olive oil.  相似文献   

6.
In this study, quantitative gas chromatography–mass spectrometry (GC–MS) analysis was used to evaluate the influence of pigment concentration on the drying of oil paints. Seven sets of artificially aged self-made paints with different pigments (yellow ochre, red ochre, natural cinnabar, zinc white, Prussian blue, chrome oxide green, hematite + kaolinite) and linseed oil mixtures were analysed. In the pigment + linseed oil mixtures, linseed oil concentration varied in the range of 10 to 95 g/100 g. The results demonstrate that the commonly used palmitic acid to stearic acid ratio (P/S) to distinguish between drying oils varied in a vast range (from especially low 0.6 to a common 1.6) even though the paints contained the same linseed oil. Therefore, the P/S ratio is an unreliable parameter, and other criteria should be included for confirmation. The pigment concentration had a substantial effect on the values used to characterise the degree of drying (azelaic acid to palmitic acid ratio (A/P) and the relative content of dicarboxylic acids (∑D)). The absolute quantification showed that almost all oil paint mock-ups were influenced by pigment concentration. Therefore, pigment concentration needs to be considered as another factor when characterising oil-based paint samples based on the lipid profile.  相似文献   

7.
Injector-internal thermal desorption from edible oils or fats enables the analysis of a wide range of compounds in oils or extracts of fatty food without prior removal of the sample matrix. The oil or fat is deposited onto the wall of the injector liner. The solutes of interest are evaporated, leaving behind the sample matrix. The injector is kept at a temperature volatilizing the solutes of interest, but minimizing evaporation of the bulk material of the oil. This technique was optimized regarding sample deposition on the liner wall (Part 1) and desorption of high boiling compounds, such as migrants from food packaging materials into simulant D (olive oil) or fatty food (Part 2). The sample liquid should be transferred to the liner wall and spread to a thin film in order to facilitate the release of high boiling components. Visual experiments with perylene-containing solutions showed that the oil must be diluted to reduce the viscosity (separation from the needle tip). The oil concentration should not exceed 20% in order to rule out that squirting sample liquid drops to the bottom of the vaporizing chamber. Further dilution to about 10% oil improves spreading of the liquid to a thin film. A rather high boiling solvent should be used, such as n-butyl acetate, to prevent thermospray at the needle exit and violent evaporation from the liner wall with sputtering liquid. Using a 5-mm ID liner, 5-10-microL injections of 10-20% oil solutions were at the upper limit.  相似文献   

8.
The correct identification of drying oils plays an essential role in providing an understanding of the conservation and deterioration of artistic materials in works of art. To this end, this work proposes the use of peak area ratios from fatty acids after ensuring that the linear responses of the detector are tested. A GC-MS method, previously reported in the literature, was revisited to its developed and validated in order to identify and quantify of eight fatty acids that are widely used as markers for drying oils in paintings, namely myristic acid (C(14:0)), palmitic acid (C(16:0)), stearic acid (C(18:0)), oleic acid (C(18:1)), linoleic acid (C(18:2)), suberic acid (2C(8)), azelaic acid, (2C(9)) and sebacic acid (2C(10)). The quaternary ammonium reagent m-(trifluoromethyl)phenyltrimethylammonium hydroxide (TMTFAH) was used for derivatization prior to GC-MS analysis of the oils. MS spectra were obtained for each methyl ester derivative of the fatty acids and the characteristic fragments were identified. The method was validated in terms of calibration functions, detection and quantification limits and reproducibility using the signal recorded in SIR mode, since two of the methyl derivatives were not totally separated in the chromatographic run. The proposed method was successfully applied to identify and characterise the most widely used drying oils (linseed oil, poppy seed oil and walnut oil) in the painting La Encarnación. This 17th century easel painting is located in the main chapel of the cathedral in Granada (Spain) and was painted by the well-known artist of the Spanish Golden Age, Alonso Cano (1601-1667).  相似文献   

9.
A method is proposed for the sample preparation of heavy oil residues characterized by viscosity of more than 700 mm2/sec at 100°C to study their elemental composition. It is shown that a wide range of elements can be determined in heavy oil residues by inductively coupled plasma atomic emission spectrometry (IC-AES) when the sample dissolved in an organic solvent is injected into the instrument. The optimal parameters for the determination of metals in heavy oil residues by ICP-AES are selected, including an organic solvent and the method of sample dilution. The results of elemental analysis of heavy residues of oils from Chernigovskoe, Shpakovskoe, and Samarskoe deposits are compared. The developed method for determining metals in heavy oil residues significantly reduces the analysis time and does not require complex sample preparation.  相似文献   

10.
To characterise the technologies and to find the appropriate treatments, the identification of the binding media of artistic and historic objects is of high importance for the restorer and conservator. Often applied together with other binders, in the present paper, the applicability of a CZE method was ascertained for the identification of the constituents of drying oils in mixtures with animal glues and/or plant gums. The drying oils are identified after alkaline hydrolysis due to their content of long‐chain saturated and unsaturated fatty acids (palmitic, stearic, oleic, linoleic, linolenic) and shorter‐chain dicarboxylic acids (pimelic, suberic, azelaic, sebacic). The dicarboxylic acids occur as products of the unsaturated acids by oxidative degradation during the drying process. The possible interferences in CE caused by the other binders are amino acids and/or monosaccharides. Such interferences could be expected as indirect UV detection has to be used, which is highly unspecific. It was found that none of the constituents of the animal glues or plant gums migrate in the time window of the analytes, thus not obstructing the identification of the analytes in any of the oil mixtures with one binder, or with a combination of both. No interference is observed even in excess of the glues. The method was applied for the identification of a drying oil in a paint layer from a ceremonial mask originating from Papua New Guinea. There is evidence that the oil is most probably from candlenut tree (Aleurites moluccana).  相似文献   

11.
多环芳烃指纹用于渤海采油平台原油的鉴别   总被引:5,自引:0,他引:5  
采用气相色谱/质谱方法,对渤海海上4个不同区块、5个平台的6口油井原油进行了烷基化多环芳烃系列化合物和美国环保署(EPA)优先控制多环芳烃系列化合物的准确定性定量分析。通过多环芳烃原始指纹谱图、多环芳烃组分分布模式和特征比值的比较对上述原油进行鉴别。结果证明不同区块的原油中多环芳烃指纹信息不尽相同,即使在同一平台不同油井中所产的原油其指纹也存在一定差异。为确保原油鉴别的准确性,分析过程中必须在仪器的稳定性和样品前处理方面实施严格的质量控制措施。  相似文献   

12.
The correct identification of drying oils plays an essential role in providing an understanding of the conservation and deterioration of artistic materials in works of art. To this end, this work proposes the use of peak area ratios from fatty acids after ensuring that the linear responses of the detector are tested. A GC-MS method, previously reported in the literature, was revisited to its developed and validated in order to identify and quantify of eight fatty acids that are widely used as markers for drying oils in paintings, namely myristic acid (C14:0), palmitic acid (C16:0), stearic acid (C18:0), oleic acid (C18:1), linoleic acid (C18:2), suberic acid (2C8), azelaic acid, (2C9) and sebacic acid (2C10). The quaternary ammonium reagent m-(trifluoromethyl)phenyltrimethylammonium hydroxide (TMTFAH) was used for derivatization prior to GC-MS analysis of the oils. MS spectra were obtained for each methyl ester derivative of the fatty acids and the characteristic fragments were identified. The method was validated in terms of calibration functions, detection and quantification limits and reproducibility using the signal recorded in SIR mode, since two of the methyl derivatives were not totally separated in the chromatographic run. The proposed method was successfully applied to identify and characterise the most widely used drying oils (linseed oil, poppy seed oil and walnut oil) in the painting La Encarnación. This 17th century easel painting is located in the main chapel of the cathedral in Granada (Spain) and was painted by the well-known artist of the Spanish Golden Age, Alonso Cano (1601-1667).  相似文献   

13.
Characterization of ox bile, traditionally used in painting, is of interest in the fields of archaeometry and conservation and restoration of works of art. Bile acids, fatty acids (F), and cholesterol found in ox bile have been identified using a derivatization method that combines the formation of ethyl esters from the carboxylic groups and the trimethylsilyl ethers from hydroxyl groups. This method of analysis is consistent with these others proposed by the authors to analyze drying oils, proteins, and diterpenic resins usually used as binders and varnishes by the painters. Bile acids from binary samples such as animal glue/ox bile, casein/ox bile and Arabic gum/ox bile have been successfully analyzed using the proposed method. Finally, a method of analysis of mixtures of drying oil and ox bile has been also proposed attempting to quantitatively characterize samples in which ox bile was added to the drying oil for increasing the surfactant properties.  相似文献   

14.
A substantially more sensitive and accurate alternative to the single-bounce attenuated total reflectance (SB-ATR) Fourier transform infrared spectroscopic method of AOAC/American Oil Chemists' Society (AOCS) was developed for determination of isolated trans isomers, based on transmission measurements using a technique called spectral reconstitution (SR). The method involves the 1:1.5 dilution of an oil with odorless mineral spirits (OMS) containing a spectral marker. The resulting reduction in sample viscosity facilitates the use of a transmission flow cell, with the spectral marker serving to determine the precise dilution ratio. This allows the spectral contributions of the OMS to be eliminated and a facsimile of the neat oil spectrum to be mathematically reconstituted. The transmission-SR (T-SR) procedure was initially evaluated relative to SB-ATR to track changes in the trans content of mixtures of unhydrogenated canola and a highly hydrogenated sunflower oil (0-30% trans). The results indicated that the T-SR procedure had the potential to serve as the basis of an accurate quantitative method. A subsequent T-SR calibration based on the spectral ratioing principle of the SB-ATR AOACIAOCS method was developed by gravimetrically adding trielaidin (0-4%) to extra virgin olive oil (EVO), producing an excellent linear response with a standard deviation (SD) of < 0.04% trans. Subsequent comparison of SB-ATR and T-SR calibrations developed for 5 oils of different types, each spiked with low levels of trielaidin (0-1.2% trans), clearly indicated that SB-ATR was signal-limited, whereas the T-SR procedure performed well. The EVO calibration was subsequently used to predict the added trans content of these spiked oils, after the spectrum of the corresponding unspiked oil had been ratioed out. The resulting plot of predicted versus added trans was linear, with a slope of 1.02 and an overall SD of <0.05% trans. When the spectra of these oils were ratioed against the spectrum of EVO, the trans predictions for some of the oils were offset by 2-3 percentage points, emphasizing the need for the appropriate trans-free reference oil to perform accurate analyses. If the latter condition is met, then T-SR provides a very simple technique, with the potential for automation, for analysis of oils by transmission spectroscopy, with approximately 20x the sensitivity of the AOAC/AOCS SB-ATR method.  相似文献   

15.
Pyrolysis oil and upgraded products are promising energy carriers. Characterisation of the oils is hampered due to the presence of a large number of components (>400) belonging to a broad variety of chemical compound classes (i.e., acids, aldehydes, ketones). In this study, a comparison of the capabilities of 2D-GC-FID and GC-MS to determine the molecular composition of these oils is made. As such, it represents a chromatographic study for a real application in green catalytic technology. Split-injection of the oil samples, diluted in tetrahydrofuran (THF), was applied without any sample pre-treatment. GC-MS application resulted in coelution, while 2D-GC showed significantly higher chromatographic resolution. Model compound mixtures were used for compound identification in the 2D-GC analysis while GC-MS was used to confirm the molecular structures. The combination of both 2D-GC-FID and GC-MS proved to be a useful method, without the requirement of a 2D-GC/TOF instrument. The technique was applied successfully to identify and quantify the main components in pyrolysis oil and upgraded pyrolysis oil made by hydrodeoxygenation (HDO) technology. Compared to GC-MS, 2D-GC-FID provides a fast overview of the various chemical compound classes present in the oils.  相似文献   

16.
The systems investigated were water/sucrose laurate/ethoxylated mono-di-glyceride/oleic phase. The oleic phase used first was the pure oils R (+)-limonene, isopropylmyristate, and caprylic-capric triglyceride; these oils were then mixed with ethanol at different mixing ratios (w/w). The total area of the one phase microemulsion region is dependent on the mixing ratios (w/w) of the mixed surfactants and that of the ethanol/oil. The largest microemulsion phase area formed with a surfactants mixing ratio (w/w) equals unity. For the systems where the oleic phase was a mixture of oil and ethanol, the total area of the monophasic microemulsion increases with the increase in the ethanol/oil mixing ratio (w/w). The Gibbs free energy of solubilization was estimated. It increases as the mixing ratio (w/w) of ethoxylated mono-di-glyceride/sucrose laurate increases and with the increase in the ethanol/oil mixing ratio (w/w). The Gibbs free energy of solubilization decreases with the increase in the water content in the water-in-oil microemulsions. The values of the Gibbs free energy of solubilization are higher for oil-in-water microemulsions compared to those of the water-in-oil microemulsions.  相似文献   

17.
An evaluation of butanol-1 as dilution solvent for the determination of boron (B) and phosphorus (P) in lubricating oils by inductively coupled plasma-atomic emission spectrometry (ICP-AES) has been performed. Standard solutions of boric acid and tri-n-butyl phosphate (TBP) in butanol were employed as calibrants for B and P, respectively. Solutions of phosphoric acid and tris(2-ethylhexyl)phosphate (TEHP) in butanol were also tested as possible P standards. Increased concentrations of oil in the sample in the range of 0 to 20% showed no significant effects on B and P emission intensities indicating that matrix matching is not required for lubricating oils of about 2–15 cPoise. Detection limits in absence of spectral interferences were 0.06 μg B/g oil and 2 μg P/g oil. Overall estimated precision was 2.5% for B concentrations above 4 μg/g oil, and 6.5% for P concentrations above 20 μg/g oil. We evaluated the performance of a high resolution scanning spectrometer for mitigating the effects of overlapping spectral interferences from iron (Fe) and copper (Cu) on B and P emission lines. An interference from Fe 249.782 nm on the primary B line at 249.773 nm is observed for Fe concentrations higher than 100 μg/g oil, but a secondary B line at 249.678 nm is completely resolved from Fe 249.653 nm. In the case of P 213.618 nm, a contribution of the right wing of a Cu line at 213.598 nm generates a signal equivalent to P 18 μg/g oil for Cu 1000 μg/g oil. Received: 25 June 1997 / Revised: 16 September 1997 / Accepted: 7 October 1997  相似文献   

18.
An evaluation of butanol-1 as dilution solvent for the determination of boron (B) and phosphorus (P) in lubricating oils by inductively coupled plasma-atomic emission spectrometry (ICP-AES) has been performed. Standard solutions of boric acid and tri-n-butyl phosphate (TBP) in butanol were employed as calibrants for B and P, respectively. Solutions of phosphoric acid and tris(2-ethylhexyl)phosphate (TEHP) in butanol were also tested as possible P standards. Increased concentrations of oil in the sample in the range of 0 to 20% showed no significant effects on B and P emission intensities indicating that matrix matching is not required for lubricating oils of about 2–15 cPoise. Detection limits in absence of spectral interferences were 0.06 μg B/g oil and 2 μg P/g oil. Overall estimated precision was 2.5% for B concentrations above 4 μg/g oil, and 6.5% for P concentrations above 20 μg/g oil. We evaluated the performance of a high resolution scanning spectrometer for mitigating the effects of overlapping spectral interferences from iron (Fe) and copper (Cu) on B and P emission lines. An interference from Fe 249.782 nm on the primary B line at 249.773 nm is observed for Fe concentrations higher than 100 μg/g oil, but a secondary B line at 249.678 nm is completely resolved from Fe 249.653 nm. In the case of P 213.618 nm, a contribution of the right wing of a Cu line at 213.598 nm generates a signal equivalent to P 18 μg/g oil for Cu 1000 μg/g oil. Received: 25 June 1997 / Revised: 16 September 1997 / Accepted: 7 October 1997  相似文献   

19.
A computer program is given for the identification of edible oils from their fatty acid ratios. The program was used with the Hewlett-Packard 3354 Laboratory Automation System in autocall mode to identify a number of vegetable oils from the fatty acid ratios determined by gas chromatography of the trans-esterified oil samples.  相似文献   

20.
傅里叶变换红外吸收光谱识别五种植物油的研究   总被引:5,自引:0,他引:5  
以花生油、大豆油、芝麻油、棉籽油和米糠油为样品,采用傅里叶变换红外光谱仪,采集傅里叶变换红外吸收光谱,对光谱预处理后,提取红外特征信息,以1746cm-1和2855cm-1处的吸收峰面积比值为横坐标,1099cm-1处与1119cm-1处的吸收峰面积比为纵坐标,在Origin6.0上做出二维分布图,对各种油脂进行识别分析。结果显示,大豆油与其它4种油脂之间有明显区分;大豆油、花生油和芝麻油分布效果好,但棉籽油各样品点之间比较分散;能与其它油脂区分开的有以下几种分布花生油明显区别于芝麻油、棉籽油和大豆油;米糠油明显区别于棉籽油和大豆油。分布有交叉的油脂有米糠油与花生油或芝麻油有交叉,棉籽油与芝麻油有交叉。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号