首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 374 毫秒
1.
提出了研究Co2+OH2/Co3+OH2反应体系电子转移反应性的接触距离依赖关系的分析方案和ab initio计算的应用方法,并讨论验证了此方案及其相应模型的可行性,分析了有关动力学量的接触距离依赖关系.详细的结果表明,用精确PES法得出的活化能与用非谐振子势得出的活化能吻合较好,它们明显优于谐势模型.对分布函数随接触距离从1.20~0.35nm改变而从10-2变到10-5.偶合矩阵元随接触距离的增加呈指数性降低.有效电子偶合要求接触距离<0.75nm.在0.50~0.75 nm范围内,相应的电子发射系数值在1.0~10-6之间.电子因子使得定域ET速率也指数性的随接触距离的增加而降低,而对分布函数对总电子转移速率的贡献与电子因子的贡献则相反.球平均ET速率随接触距离的变化呈抛物线变化,并在接触距离为0.5 nm时有最大值.此最大值与总观测ET速率非常接近.对于此偶合体系,气态时ET速率是106L·mol-1·s-1.进一步来说,实验上难于确定此类水合体系尤其是未饱和中间组分的电子结构和PES,ab initio算法在讨论其ET反应性方面能起到一个有效的辅助作用.  相似文献   

2.
采用光致发光光谱技术对一系列不同条件下制备的NaTaO3及不同掺杂量的NaTaO3∶Bi3+进行了研究. 结果表明, NaTaO3的发光性质与其制备条件密切相关: 在钠离子不足的条件下合成的样品, 其发光带主要位于515和745 nm左右; 而在钠离子充足条件下合成的样品, 其发光带位于460 nm左右, 随着n(Na)/n(Ta)的降低, 发光带向长波长方向移动; 掺入Bi3+之后, 其发光峰由515 nm移至455 nm, 随着Bi3+掺入量的增加, 455 nm的发光带强度减弱. 515 nm的发光带与替位缺陷TaNa....相关; 745 nm的发光带与VNa`缺陷相关; 而460 nm的发光带与本征TaO6基团相关. 将Bi3+掺入到钽酸钠样品, TaNa....由BiNa..替代, 相应的发光带向高的n(Na)/n(Ta)方向移动, 从而呈现出本征TaO6基团的发光带.  相似文献   

3.
Sr2SiO4∶Dy3+材料制备及发光特性   总被引:2,自引:1,他引:1  
采用高温固相法制备了Sr2SiO4∶Dy3+发光材料. 在365 nm紫外光激发下, 测得Sr2SiO4∶Dy3+材料的发射光谱为一个多峰宽谱, 主峰分别为486, 575和665 nm; 监测575 nm的发射峰, 所得材料的激发光谱为一个多峰宽谱, 主峰分别为331, 361, 371, 397, 435, 461和478 nm. 研究了Dy3+掺杂浓度对Sr2SiO4∶Dy3+材料发射光谱强度的影响. 研究结果显示, 随着Dy3+浓度的增大, 黄、蓝发射峰比值(Y/B)也逐渐增大; 随着Dy3+浓度的增大, 575 nm发射峰强度先增大后减小. 加入电荷补偿剂Li+, Na+和K+均提高了Sr2SiO4∶Dy3+材料的发射光谱强度, 其中以Li+的情况最为明显.  相似文献   

4.
采用溶胶-凝胶法合成了纳米荧光粉BaAl2S4:Eu2+, 并对其性能进行了研究.  相似文献   

5.
在B3LYP/6-311++G(2df,p)水平上优化了标题反应驻点物种的几何构型, 并在相同水平上通过频率计算和内禀反应坐标(IRC)分析对过渡态结构及连接性进行了验证. 采用双水平计算方法HL//B3LYP/6-311++G(2df,p)对所有驻点及部分选择点进行了单点能校正, 构建了CH2SH+NO2反应体系的单重态反应势能剖面. 研究结果表明, CH2SH与NO2反应体系存在4条主要反应通道, 两个自由基中的C与N首先进行单重态耦合, 形成稳定的中间体HSCH2NO2 (a). 中间体a经过C—N键断裂和H(1)—O(2)形成过程生成主要产物P1 (CH2S+trans-HONO), 此过程需克服124.1 kJ•mol-1的能垒. 中间体a也可以经过C—N键断裂及C—O键形成转化为中间体HSCH2ONO (b), 此过程的能垒高达238.34 kJ•mol-1. b再经过一系列的重排异构转化得到产物P2 (CH2S+cis-HONO), P3 (CH2S+HNO2)和P4 (SCH2OH+NO). 所有通道均为放热反应, 反应能分别为-150.37, -148.53, -114.42和-131.56 kJ•mol-1. 标题反应主通道R→a→TSa/P1→P1的表观活化能为-91.82 kJ•mol-1, 此通道在200~3000 K温度区间内表观反应速率常数三参数表达式为kCVT/SCT=8.3×10-40T4.4 exp(12789.3/T) cm3•molecule-1•s-1.  相似文献   

6.
在表面活性剂辅助的水热条件下合成出尺寸均一的Gd2O3∶Eu3+纳米棒, 对其结构和荧光性质进行了表征, 并对其生长机理进行了初步讨论. XRD结果表明, 水热前驱体样品为六方晶相的Gd(OH)3, 经过灼烧之后样品为立方相的Gd2O3. TEM照片表明, 所得样品为直径60 nm、长度约600 nm的纳米棒. 荧光光谱表明, 在波长为254 nm 的紫外光激发下, Gd2O3∶Eu3+纳米棒产生了不同于前驱体的特征红光发射, 对应于Eu3+ 的5D0-7F2跃迁, 表明Gd2O3是红色发光材料的良好基质.  相似文献   

7.
在密度泛函和从头算理论水平下计算了单重态的NC2S+离子的结构、能量、光谱以及稳定性. 在B3LYP/6-311G(d)水平下, 得到8个异构体, 它们由15个过渡态相连接. 在CCSD(T)/6-311+G(2df)//QCISD/6-311G(d)+ZPVE水平下, 得到能量最低的异构体是直线型的具有1Σ电子态的NCCS+(1)(0.0 kJ/mol), 其次是直线型的异构体CNCS+(2)(54.8 kJ/mol). 两个低能量的异构体1和2及另外一个高能量的直线型异构体CCNS+(3)(323.8 kJ/mol)都具有相当大的动力学稳定性, 这三个异构体在具备一定条件的实验室和星际条件下是可以进行观测的. 分析了这3个异构体的成键性质.  相似文献   

8.
在CCSD(T)/6-311G(d,p)//B3LYP/6-311G(d,p)+ZPE水平上对反应·CHCHCH3+NO进行了计算, 并建立了其单重态的反应势能面. 在该反应中, 分别找到生成P1(CH3CHO+HCN), P2(CH3CHO+HNC), P3(CH3CN+HCHO), P4(CH3CCH+HNO)的4条产物通道, 其中·CHCHCH3和NO中的氮原子直接连接形成m1(trans-CH3CHCHNO), m1经过顺反异构形成m2(cis-CH3CHCHNO), m2再经过CCNO四元环合, 然后发生环解离, 最后生成产物P1(CH3CHO+HCN)是最可行的产物通道, 其余三条通道为次要产物通道. 该体系中生成P1的反应路径与同类体系·C2H3+NO的主要反应路径相类似, 两者的差别是前者为动力学可行的反应, 而后者为动力学不可行反应, 这使得·CHCHCH3+NO反应比·C2H3+NO反应更具有实际意义.  相似文献   

9.
采用1H MAS NMR技术,分别对不同温度(773和973 K)、不同气氛(氢气、氧气、氦气及空气)条件下处理的SiO2和Rh/SiO2催化剂上的氢物种和含氢物种进行了研究.在SiO2及经氧气处理的催化剂上,检测到了位于约7.0,3.8~4.0,2.0及1.0~1.5处的一系列信号,它们可分别归属为强吸附H2O,物理吸附H2O,SiOH及受SiO2晶格氧缺陷位屏蔽影响的SiOH.而在经氢气处理的催化剂上,除了上述诸信号外,还检测到了位于3.0和0.0处的低场信号及约位于-110处的高场信号.其中,低场信号分别归属为弱吸附在载体SiO2中的桥式晶格氧处的氢物种(溢流氢物种)和晶格氧缺陷处的氢物种(Si-H物种),而高场信号则同时归属为解离吸附在Rh上的可逆吸附氢物种和不可逆吸附氢物种.经氢气处理的催化剂上,可能还形成了另外一种以独特的“离域氢”形式存在于Rh上的解离吸附氢物种(b氢物种). 该氢物种应具有-20~-50的化学位移,但其信号因被低场信号的自旋边带掩盖而未能在1H MAS NMR实验中直接观察到.溢流氢物种和Si-H物种由可逆吸附氢物种和/或b氢物种从Rh上向邻近的载体SiO2迁移而形成.高温对于氢溢流过程更为有利.  相似文献   

10.
棒状LaF3∶Eu3+纳米晶的制备与发光性能   总被引:1,自引:0,他引:1  
采用一种简单的液相反应法在室温下合成了棒状的LaF3∶Eu3+纳米晶, 对其结构和发光性能进行了表征. XRD分析结果表明, 室温下即可得到结晶良好的六方晶相的LaF3, 灼烧之后样品的衍射峰增强, 没有杂相产生. TEM照片表明, 棒状LaF3∶Eu3+纳米材料的直径为8 nm左右, 长度达到50 nm. 荧光光谱表明, 室温下合成的棒状LaF3∶Eu3+纳米晶的最强发射峰位于589 nm, 对应于Eu3+的5D0-7F1跃迁发射, 说明Eu3+占据LaF3基质中La3+晶格点的C2对称格位上. 同时Eu3+的猝灭摩尔分数为5%, 荧光寿命随着灼烧温度的升高而延长.  相似文献   

11.
采用高温固相法制备了白蓝光双发射为一体的Cd0.5Zn0.5B4O7∶Ce/Dy系列发光材料. 由XRD测得Cd0.41Zn0.5B4O7∶Ce0.04/Dy0.02的晶胞参数: a=1.3885 nm, b=0.8020 nm, c=0.8670 nm, 属于正交晶系, Pbca空间群. 在Ce/Dy双掺的体系中存在Ce3+和Dy3+两种发光中心, 254~350 nm激发主要是Dy3+的 4F9/2→6H15/2和4F9/2→6H13/2跃迁发射, 而355—390 nm激发主要为Ce3+的5d→4f跃迁发射. 340 nm激发Ce/Dy双掺发光体的发射强度是同浓度Dy3+单掺的31倍, Ce3+是Dy3+的高效敏化剂, 而355—390 nm激发Dy3+是Ce3+的敏化剂. 体系中存在少见的Ce3+→Dy3+与Dy3+→Ce3+的能量双向传递.  相似文献   

12.
采用高温固相法合成了一系列的(Y0.95Ln0.01Ce0.04)3Al5O12(简称YAG∶Ce,Ln), 系统地研究了此体系中的Ln3+对Ce3+的发光强度的影响. 结果表明, 在YAG∶Ce的体系中, La3+, Gd3+, Lu3+等光学透明离子的少量掺杂对Ce3+的发光强度的影响不大; 掺入少量的Pr3+, Sm3+, Tb3+, Dy3+, Ho3+, Er3+, Tm3+等稀土离子, 由于它们的能级与Ce3+的能级有交叠, 使它们之间存在着竞争吸收或能量转移, 对Ce3+的发光有较明显的变化, 其中, Pr3+和Sm3+的掺入使其在红光区有发射峰, 可以增加YAG∶Ce的红色成分以提高显色性; Nd3+, Eu3+和Yb3+对Ce3+的发光有严重的猝灭作用.  相似文献   

13.
Ce3+,Tb3+,Eu3+共掺杂Sr2MgSi2O7体系的白色发光和能量传递机理   总被引:1,自引:0,他引:1  
通过正交试验,采用高温固相法制备了Sr2-x-y-zMgSi2O7∶xCe3+,yTb3+,zEu3+系列样品.使用X射线衍射仪和荧光光谱仪表征了样品的物相和发光性质,并讨论了Ce3+-Tb3+-Eu3+共掺杂Sr2MgSi2O7体系中的能量传递过程.实验结果表明,在327 nm波长激发下,所合成荧光粉的发射峰主要位于387 nm(蓝紫)、542nm(绿)和611 nm(红)处;分别以387,542和611 nm为监控波长,所得激发光谱显示荧光粉在327 nm处有最好的激发.在327 nm光激发下,系列样品发光进入白光区.最优化的荧光粉为Sr1.91MgSi2O7∶0.01Ce3+,0.05Tb3+,0.03Eu3+,其色坐标为(0.337,0.313),是一种潜在的发光二极管(LED)用白色荧光粉.  相似文献   

14.
以聚乙二醇为配位剂,用水热法制备出纳米级上转换发光粉Yb3+和Tm3+共掺杂的NaY(WO4)2。研究了不同cYb/cTm对上转换发光强度的影响,实验表明当cYb/cTm=5∶1时,上转换发光强度最强。用XRD,SEM确定了Yb3+和Tm3+共掺杂的NaY(WO4)2是四方晶系,其粒径在25~35 nm范围,且分散均匀。用980 nm半导体激光器(LD)对其进行激发,在室温下观察到了365 nm附近紫外发射峰、456 nm,476 nm附近的蓝光发射峰和648 nm附近的红光发射峰,分别对应于Tm3+离子的1D2→3H6,1D2→3F4,1G4→3H6和1G4→3F4的跃迁。根据泵浦功率与发光强度的关系得出紫外发射峰、蓝光和红光发射均为双光子过程。  相似文献   

15.
KZnF3∶Ce,Tb的溶剂热合成及光谱性质   总被引:2,自引:1,他引:1  
采用溶剂热法合成了Ce3+,Tb3+单掺和双掺KZnF3发光粉。分析了样品的结构与形貌。结果表明,所合成的样品均为单相,颗粒粒度分布均匀。讨论了它们的光谱特性。研究发现,在KZnF3∶Ce3+激发光谱中激发带劈裂成2个带峰,最大发光中心分别位于263 nm(主峰)和246 nm,而在发射光谱中只观察到1个带状发射峰,最大发射中心位于330 nm。在KZnF3∶Tb3+激发光谱中存在较强的基质激发峰,而在发射光谱中,发现Tb3+的5D4→7FJ(J=6,5,4,3)跃迁。在KZnF3双掺体系中,Tb3+的发光强度随Ce3+的浓度增加而增强,存在Ce3+→Tb3+能量传递,尤其是Tb3+的5D4→7F5跃迁发射显著增强,有望成为一种有发展前途的绿色荧光材料。  相似文献   

16.
采用高温固相法合成了Ba2-xB2O5:xTb3+绿色荧光粉。XRD图谱表明合成物质为纯相的Ba2B2O5晶体。该样品在256 nm(4f8→4f75d1)处有最强激发;有4个发射峰,分别位于489 nm(5D4→7F6),545 nm(5D4→7F5),585 nm(5D4→7F4)和622 nm(5D4→7F3);其中在545 nm处有最强发射。随着Tb3+掺杂浓度的不同,激发峰与发射峰的强度先增大后减小,当x=0.7时最佳。研究了电荷补偿剂Na+对发光性能的影响,样品的发射光谱强度随Na+掺杂浓度的增大而增大,当掺杂浓度达到或超过Tb3+浓度后发射光谱强度下降。  相似文献   

17.
采用高温固相法成功制备了KNaCa2(PO4)2:Tb3+绿色荧光粉,并研究了其发光性质。测量了其激发和发射光谱,样品发射峰位于418,440,492,545,586,622 nm,分别对应Tb3+的5 D3→7 F5,5 D3→7 F4,5 D4→7 F6,5 D4→7 F5,5 D4→7 F4,5 D4→7 F3能级跃迁,主发射峰位于545 nm。主激发峰位于350~390 nm之间,属于4f→4f电子跃迁吸收,与InGaN管芯匹配。确定了在KNaCa2(PO4)2基质中Tb3+浓度对其发光强度的影响及其自身浓度猝灭机制。研究了不同电荷补偿剂对KNaCa2(PO4)2:Tb3+材料发光的影响,其中Li+离子改善其发光强度最为明显。  相似文献   

18.
花瓣形YBO3∶Eu3+发光薄膜的制备与表征   总被引:1,自引:0,他引:1  
本文报道了通过水热合成在AAO模板上组装出花瓣形YBO3∶Eu3+薄膜的研究工作.  相似文献   

19.
研究了以La3+离子为辅助激活剂,对Sm3+掺杂的发光材料Sr2SnO4:Sm3+余辉性能的影响。采用传统的高温固相法合成Sr2SnO4∶Sm3+,La3+红色长余辉发光材料。利用X射线粉末衍射仪、荧光光谱仪、热释光剂量仪等手段对粉末样品进行了表征。分析结果表明,在1400℃得到了单相Sr2SnO4,Sr2SnO4∶Sm3+,La3+发光粉末有563、599和646 nm 3个发射峰,与Sm3+单掺杂的Sr2SnO4∶Sm3+相比,其光谱发射峰位没有明显变化。余辉亮度衰减曲线表明适量的La3+掺杂可以延长Sr2SnO4∶Sm3+的余辉时间。通过对热释光谱的分析,解释了双掺杂发光粉余辉性能增强的原因,La3+掺杂增加了更多适宜深度的陷阱(VSr″),可以有效存储光能,增强余辉的时间和强度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号