首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Fluid Phase Equilibria》2005,231(1):20-26
Liquid–liquid equilibrium (LLE) data for non-aqueous liquid (neohexane [NH], tert-butyl methyl ether [TBME], methylcyclohexane [MCH], or n-heptane [nC7]) and water have been measured under atmospheric pressure at 275.5, 283.15, and 298.15 K. It was found that TBME is the most water soluble followed by NH, MCH, and nC7. As the temperature increased, the solubility of the non-aqueous liquids (NALs) in water decreased. The solubility of water in the non-aqueous liquid was found to increase in the following order: MCH < nC7 < NH < TBME. It was found to increase with increasing temperature. In addition, vapour–liquid–liquid equilibrium (VLLE) data for the above binary systems with methane were measured at 275.5 K and at 120, 1000, and 2000 kPa. It was found that the vapour composition of water and NALs decreased as the pressure increased. The water content in the non-aqueous phase was not a strong function of pressure. The concentration of methane in the non-aqueous phase increased as the pressure increased. Furthermore, the concentration of the methane and NALs in the water phase increased proportionally with pressure. The solubility of methane in water followed Henry's law. It is noted that the measurements were completed prior to the onset of hydrate nucleation.  相似文献   

2.
Methane storage in structure H (sH) clathrate hydrates is attractive due to the relatively higher stability of sH as compared to structure I methane hydrate. The additional stability is gained without losing a significant amount of gas storage density as happens in the case of structure II (sII) methane clathrate. Our previous work has showed that the selection of a specific large molecule guest substance (LMGS) as the sH hydrate former is critical in obtaining the optimum conditions for crystallization kinetics, hydrate stability, and methane content. In this work, molecular dynamics simulations are employed to provide further insight regarding the dependence of methane occupancy on the type of the LMGS and pressure. Moreover, the preference of methane molecules to occupy the small (5(12)) or medium (4(3)5(6)6(3)) cages and the minimum cage occupancy required to maintain sH clathrate mechanical stability are examined. We found that thermodynamically, methane occupancy depends on pressure but not on the nature of the LMGS. The experimentally observed differences in methane occupancy for different LMGS may be attributed to the differences in crystallization kinetics and/or the nonequilibrium conditions during the formation. It is also predicted that full methane occupancies in both small and medium clathrate cages are preferred at higher pressures but these cages are not fully occupied at lower pressures. It was found that both small and medium cages are equally favored for occupancy by methane guests and at the same methane content, the system suffers a free energy penalty if only one type of cage is occupied. The simulations confirm the instability of the hydrate when the small and medium cages are empty. Hydrate decomposition was observed when less than 40% of the small and medium cages are occupied.  相似文献   

3.
Molecular dynamics (MD) simulations are performed to study the stability of structure H clathrate-hydrates of methane+large-molecule guest substance (LMGS) at temperatures of 270, 273, 278 and 280 K under canonical (NVT-) ensemble condition in a 3×3×3 structure H unit cell replica with 918 TIP4P water molecules. The studied LMGS are 2-methylbutane (2-MB), 2,3-dimethylbutane (2,3-DMB), neohexane (NH), methylcyclohexane (MCH), adamantane and tert-butyl methyl ether (TBME). In the process of MD simulation, achieving equilibrium of the studied system is recognized by stability in calculated pressure for NVT-ensemble. So, for the accuracy of MD simulations, the obtained pressures are compared with the experimental phase diagrams. Therefore, the obtained equilibrium pressures by MD simulations are presented for studying the structure H clathrate-hydrates. The results show that the calculated temperature and pressure conditions by MD simulations are consistent with the experimental phase diagrams. Also, the radial distribution functions (RDFs) of host-host, host-guest and guest-guest molecules are used to analysis the characteristic configurations of the structure H clathrate-hydrate.  相似文献   

4.
In order to study gas hydrate in media, formation of methane hydrate in three different media including loess, fine and coarse sands were studied. Five cooling rates were applied to form the methane hydrate. The nucleation time of the formation of methane hydrate with each cooling rate were measured for comparison. The experimental results show that the cooling rate is a significant factor affecting nucleation of methane hydrate and gas conversion. Under the same initial conditions, the faster the cooling rate, the shorter the nucleation time and the lower the methane gas conversion rate. The media also affect the formation process of methane hydrate within it. In loess, the gas conversion rate is lowest; in coarse sand, the gas conversion rate is the greatest; and in fine sand, it is in between. According to the study, it is found that the smaller the particle size of the media, the harder the methane hydrate forms within it.  相似文献   

5.
Neutron diffraction runs and gas-consumption experiments based on pressure-volume-temperature measurements are conducted to study the kinetics of methane hydrate formation from hydrogenated and deuterated ice powder samples in the temperature range of 245-270 K up to high degrees of transformation. An improved theory of the hydrate growth in a polydisperse ensemble of randomly packed ice spheres is developed to provide a quantitative interpretation of the data in terms of kinetic model parameters. This paper continues the research line of our earlier study which was limited to the monodisperse case and shorter reaction times (Staykova et al., 2003). As before, we distinguish the process of initial hydrate film spreading over the ice particle surface (stage I) and the subsequent hydrate shell growth (stage II) which includes two steps, i.e., an interfacial clathration reaction and the gas and water transport (diffusion) through the hydrate layer surrounding the shrinking ice cores. Although kinetics of hydrate formation at stage II is clearly dominated by the diffusion mechanism which becomes the limiting step at temperatures above 263 K, both steps are shown to be essential at lower temperatures. The permeation coefficient D is estimated as (1.46 +/- 0.44) x 10(-12) m2/h at 263 K with an activation energy Q(D) approximately 52.1 kJ/mol. This value is close to the energy of breaking hydrogen bonds in ice Ih and suggests that this process is the rate-limiting step in hydrate formation from ice in the slower diffusion-controlled part of the reaction.  相似文献   

6.
In order to study the nature of gas hydrate in porous media, the formation and dissociation processes of methane hydrate in loess were investigated. Five cooling rates were applied to form methane hydrate. The nucleation times of methane hydrate formation at each cooling rate were measured for comparison. The experimental results show that cooling rate is a significant factor affecting the nucleation of methane hydrate and gas conversion. Under the same initial conditions, the faster the cooling rate, the shorter the nucleation time, and the lower the methane gas conversion. Five dissociating temperatures were applied to conduct the dissociation experiment of methane hydrate formed in loess. The experimental results indicated that the temperature evidently controlled the dissociation of methane hydrate in loess and the higher the dissociating temperature, the faster the dissociating rates of methane hydrate.  相似文献   

7.
The formation of hydrates from a methane-ethane-propane mixture is more complex than with single gases. Using nuclear magnetic resonance (NMR) and high-pressure powder X-ray diffraction (PXRD), we have investigated the structural properties of natural gas hydrates crystallized in the presence of kinetic hydrate inhibitors (KHIs), two commercial inhibitors and two biological ice inhibitors, or antifreeze proteins (AFPs). NMR analyses indicated that hydrate cage occupancy was at near saturation for controls and most inhibitor types. Some exceptions were found in systems containing a new commercial KHI (HIW85281) and a recombinant plant AFP, suggesting that these two inhibitors could impact the kinetics of cavity formation. NMR analysis confirmed that the hydrate composition varies during crystal growth by kinetic effects. Strikingly, the coexistence of both structures I (sI) and II (sII) were observed in NMR spectra and PXRD profiles. It is suggested that sI phases may form more readily from liquid water. Real time PXRD monitoring showed that sI hydrates were less stable than sII crystals, and there was a conversion to the stable phase over time. Both commercial KHIs and AFPs had an impact on hydrate metastability, but transient sI PXRD intensity profiles indicated significantly different modes of interaction with the various inhibitors and the natural gas hydrate system.  相似文献   

8.
Contrary to the thermodynamic inhibiting effect of methanol on methane hydrate formation from aqueous phases, hydrate forms quickly at high yield by exposing frozen water–methanol mixtures with methanol concentrations ranging from 0.6–10 wt % to methane gas at pressures from 125 bars at 253 K. Formation rates are some two orders of magnitude greater than those obtained for samples without methanol and conversion of ice is essentially complete. Ammonia has a similar catalytic effect when used in concentrations of 0.3–2.7 wt %. The structure I methane hydrate formed in this manner was characterized by powder X‐ray diffraction and Raman spectroscopy. Steps in the possible mechanism of action of methanol were studied with molecular dynamics simulations of the Ih (0001) basal plane exposed to methanol and methane gas. Simulations show that methanol from a surface aqueous layer slowly migrates into the ice lattice. Methane gas is preferentially adsorbed into the aqueous methanol surface layer. Possible consequences of the catalytic methane hydrate formation on hydrate plug formation in gas pipelines, on large scale energy‐efficient gas hydrate formation, and in planetary science are discussed.  相似文献   

9.
Local density profiles and local component pressure profiles were obtained for two model systems containing methane hydrate and ice by molecular dynamics simulation. The ice matrix with methane hydrate clusters inserted into it was shown to be stable at normal pressure and even at a temperature higher than the temperature of methane hydrate dissociation. Calculations showed that the pressure in such a methane hydrate cluster inserted into ice was higher than in the ice phase. There were, however, no strong structure distortions because of the formation of a network of strong hydrogen bonds between the hydrate and ice phases.  相似文献   

10.
活性炭中甲烷水合物的分解动力学   总被引:9,自引:0,他引:9  
刘犟  阎立军  陈光进  郭天民 《化学学报》2002,60(8):1385-1389
在封闭体系内,在初始分解压力0.1 MPa,温度范围276~265 K之间,测定了 五组甲烷水合物在活性炭中的解动力学数据。分析了甲烷水合物在活性炭中分解的 物理过程,提出了以微分方程表达的宏观分解动力学模型。使用单步积分的吉尔( Gear)方法解得微分方程的数值解,结合单纯形最优化方法拟合模型参数,模型计 算值与实验值符合良好。  相似文献   

11.
For the first time, the compositions of argon and methane high-pressure gas hydrates have been directly determined. The studied samples of the gas hydrates were prepared under high-pressure conditions and quenched at 77 K. The composition of the argon hydrate (structure H, stable at 460-770 MPa) was found to be Ar.(3.27 +/- 0.17)H(2)O. This result shows a good agreement with the refinement of the argon hydrate structure using neutron powder diffraction data and helps to rationalize the evolution of hydrate structures in the Ar-H(2)O system at high pressures. The quenched argon hydrate was found to dissociate in two steps. The first step (170-190 K) corresponds to a partial dissociation of the hydrate and the self-preservation of a residual part of the hydrate with an ice cover. Presumably, significant amounts of ice Ic form at this stage. The second step (210-230 K) corresponds to the dissociation of the residual part of the hydrate. The composition of the methane hydrate (cubic structure I, stable up to 620 MPa) was found to be CH(4).5.76H(2)O. Temperature dependence of the unit cell parameters for both hydrates has been also studied. Calculated from these results, the thermal expansivities for the structure H argon hydrate are alpha(a) = 76.6 K(-1) and alpha(c) = 77.4 K(-1) (in the 100-250 K temperature range) and for the cubic structure I methane hydrate are alpha(a) = 32.2 K(-1), alpha(a) = 53.0 K(-1), and alpha(a) = 73.5 K(-1) at 100, 150, and 200 K, respectively.  相似文献   

12.
The decomposition kinetic behaviors of methane hydrates formed in 5 cm3 porous wet activated carbon were studied experimentally in a closed system in the temperature range of 275.8-264.4 K. The decomposition rates of methane hydrates formed from 5 cm3 of pure free water and an aqueous solution of 650 g x m(-3) sodium dodecyl sulfate (SDS) were also measured for comparison. The decomposition rates of methane hydrates in seven different cases were compared. The results showed that the methane hydrates dissociate more rapidly in porous activated carbon than in free systems. A mathematical model was developed for describing the decomposition kinetic behavior of methane hydrates below ice point based on an ice-shielding mechanism in which a porous ice layer was assumed to be formed during the decomposition of hydrate, and the diffusion of methane molecules through it was assumed to be one of the control steps. The parameters of the model were determined by correlating the decomposition rate data, and the activation energies were further determined with respect to three different media. The model was found to well describe the decomposition kinetic behavior of methane hydrate in different media.  相似文献   

13.
Hydrate formation and dissociation processes are always accompanied by water migration in porous media, which is similar to the ice. In our study, a novel pF-meter sensor which could detect the changes of water content inside sand was first applied to hydrate formation and dissociation processes. It also can study the water change characteristics in the core scale of a partially saturated silica sand sample and compare the differences of water changes between the processes of formation and dissociation of methane hydrate and freezing and thawing of ice. The experimental results showed that the water changes in the processes of formation and dissociation of methane hydrate were basically similar to that of the freezing and thawing of ice in sand. When methane hydrate or ice was formed, water changes showed the decrease in water content on the whole and the pF values rose following the formation processes. However, there were very obvious differences between the ice thawing and hydrate dissociation.  相似文献   

14.
INS (Inelastic Neutron Scattering) spectrum of methane hydrate was measured on MARI (a direct-geometry chopper spectrometer) at Rutherford Appleton Laboratory, UK. Compared with ice Ih, it is found that the whole spectrum of methane hydrate moves toward high-energy by about 1.5 meV. Using lattice dynamical (LD) technique, computer simulations of methane hydrate were carried out. In the simulations, four potential models (BF, TIP3P, TIP4P, MCY) were employed to calculate the phonon density of states (PDOS). ...  相似文献   

15.

To study the influence exerted by oxidized oil components on the nucleation and growth of gas hydrates the nucleation of methane hydrate and ice in 50 wt % emulsions of oil in native oil and two samples of the same oil subjected to biodegradation for 30 and 60 days (samples N, V30, and V60, respectively) were examined. In the course of measurements, the samples were cooled to–15°C at a constant rate of 0.14 deg min–1 and then heated to the initial temperature. The initial methane pressure in the system was 15 MPa at 20°C. In the process, the temperatures were recorded at which heat effects corresponding to the formation of hydrate/ice and the melting of these. In the case of emulsion N, no exothermic effects were manifested in the cooling stage. In the heating stage, the endothermic effects of ice melting were found in half of the samples. No effects corresponding to the decomposition of the hydrate were observed. In experiment with V30 samples, the formation of the hydrate and ice was manifested as strong exothermic effects. Ice was formed in all the experiments, and the hydrate, only in 21% of the samples. Finally, in experiments with V60, ice and the hydrate were formed in 54 and 13% of cases, respectively. Their formation was manifested as weak exothermic effects in the cooling stage. Thus, it was demonstrated that the biodegradation level of oil samples affects the nucleation of methane hydrate and ice in emulsions formed on the basis of these samples.

  相似文献   

16.
By employing inverse modeling to analyze the laboratory data, we determined the composite thermal conductivity (k(theta), W/m/K) of a porous methane hydrate sample ranged between 0.25 and 0.58 W/m/K as a function of density. The calculated composite thermal diffusivities of porous hydrate sample ranged between 2.59 x 10(-7) m(2)/s and 3.71 x 10(-7) m(2)/s. The laboratory study involved a large heterogeneous sample (composed of hydrate, water, and methane gas). The measurements were conducted isobarically at 4.98 MPa over a temperature range of 277.3-279.1 K. Pressure and temperature were monitored at multiple locations in the sample. X-ray computed tomography (CT) was used to visualize and quantify the density changes that occurred during hydrate formation from granular ice. CT images showed that methane hydrate formed from granular ice was heterogeneous and provided an estimate of the sample density variation in the radial direction. This facilitated quantifying the density effect on composite thermal conductivity. This study showed that the sample heterogeneity should be considered in thermal conductivity measurements of hydrate systems. Mixing models (i.e., arithmetic, harmonic, geometric mean, and square root models) were compared to the estimated composite thermal conductivity determined by inverse modeling. The results of the arithmetic mean model showed the best agreement with the estimated composite thermal conductivity.  相似文献   

17.
Dissociation processes of methane hydrate synthesized with glass beads were investigated using powder X-ray diffraction and calorimetry. Methane hydrate formed with coarse glass beads dissociated quickly at 150-200 K; in this temperature range methane hydrate dissociates at atmospheric pressure. In contrast, methane hydrate formed with glass beads less than a few microns in size showed very high stability up to just below the melting point of ice, even though this temperature is well outside the zone of thermodynamic stability of the hydrate. The rate-determining steps for methane hydrate dissociation within pores are also discussed. The experimental results suggest that methane hydrate existing naturally within the pores of fine particles such as mud at low temperatures would be significantly more stable than expected thermodynamically.  相似文献   

18.
Classical molecular dynamics simulations have been performed to investigate the interface between liquid water and methane gas under methane hydrate forming conditions. The local environments of the water molecules were studied using order parameters which distinguish between liquid water, ice and methane hydrate phases. Bulk water and water/air interfaces were also studied to allow comparisons to be made between water molecules in the different environments and to determine the effects of the different methane densities studied. Good agreement between experimental and calculated surface tensions is obtained if long range corrections are included. The water surface is found to have a structure which is very similar to that of bulk water, but more tetrahedral, and more clathrate-like than ice-like. In these simulations the concentration of methane in water at the interface is shown to be appropriate for clathrates at higher gas densities (pressures). The orientation of water molecules around methane molecules in the interfacial region appears to depend only weakly on pressure and one of the difficulties in forming hydrate is the availability of water molecules tangential to the hydrate cage. At the interface, the water structure is more disordered than in the bulk water region with increased occurrence compared with the bulk of those angles and orientations found in the clathrate structure.  相似文献   

19.
A single-sided transient plane source technique has been used to determine the thermal conductivity and thermal diffusivity of a compacted methane hydrate sample over the temperature range of 261.5-277.4 K and at gas-phase pressures ranging from 3.8 to 14.2 MPa. The average thermal conductivity, 0.68 +/- 0.01 W/(m K), and thermal diffusivity, 2.04 x 10(-7) +/- 0.04 x 10(-7) m2/s, values are, respectively, higher and lower than previously reported values. Equilibrium molecular dynamics (MD) simulations of methane hydrate have also been performed in the NPT ensemble to estimate the thermal conductivity for methane compositions ranging from 80 to 100% of the maximum theoretical occupation, at 276 K and at pressures ranging from 0.1 to 100 MPa. Calculations were performed with three rigid potential models for water, namely, SPC/E, TIP4P-Ew, and TIP4P-FQ, the last of which includes the effects of polarizability. The thermal conductivities predicted from MD simulations were in reasonable agreement with experimental results, ranging from about 0.52 to 0.77 W/(m K) for the different potential models with the polarizable water model giving the best agreement with experiments. The MD simulation method was validated by comparing calculated and experimental thermal conductivity values for ice and liquid water. The simulations were in reasonable agreement with experimental data. The simulations predict a slight increase in the thermal conductivity with decreasing methane occupation of the hydrate cages. The thermal conductivity was found to be essentially independent of pressure in both simulations and experiments. Our experimental and simulation thermal conductivity results provide data to help predict gas hydrate stability in sediments for the purposes of production or estimating methane release into the environment due to gradual warming.  相似文献   

20.
As a new energy source that could replace petroleum, the global reserves of methane hydrate (combustible ice) are estimated to be approximately 20 000 trillion cubic meters. A large amount of methane hydrate has been found under the seabed, but the transportation and storage of methane gas far from coastlines are technically unfeasible and expensive. The direct conversion of methane into value‐added chemicals and liquid fuels is highly desirable but remains challenging. Herein, we prepare a series of iridium complexes based on porous polycarbazoles with high specific areas and good thermochemical stabilities. Through structure tuning we optimized their catalytic activities for the selective monoborylation of methane. One of these catalysts (CAL‐3‐Ir) can produce methyl boronic acid pinacol ester (CH3Bpin) in 29 % yield in 9 h with a turnover frequency (TOF) of approximately 14 h?1. Because its pore sizes favor monoborylated products, it has a high chemoselectivity for monoborylation (CH3Bpin:CH2(Bpin)2=16:1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号