首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A proof is given, at a greater level of generality than previous no-go theorems, of the impossibility of formulating a modal interpretation that exhibits serious Lorentz invariance at the fundamental level. Particular attention is given to modal interpretations of the type proposed by Bub.  相似文献   

2.
The conventionalistic aspects of physical world perception are reviewed with an emphasis on the constancy of the speed of light in relativity theory and the irreversibility of measurements in quantum mechanics. An appendix contains a complete proof of Alexandrov's theorem using mainly methods of affine geometry.  相似文献   

3.
In terms of beable algebras Halvorson and Clifton [International Journal of Theoretical Physics 38 (1999) 2441–2484] generalized the uniqueness theorem (Studies in History and Philosophy of Modern Physics 27 (1996) 181–219] which characterizes interpretations of quantum mechanics by preferred observables. We examine whether dispersion-free states on beable algebras in the generalized uniqueness theorem can be regarded as truth-value assignments in the case where a preferred observable is the set of all spectral projections of a density operator, and in the case where a preferred observable is the set of all spectral projections of the position operator as well.  相似文献   

4.
We study the process of observation (measurement), within the framework of a perspectival (relational, relative state) version of the modal interpretation of quantum mechanics. We show that if we assume certain features of discreteness and determinism in the operation of the measuring device (which could be a part of the observer's nerve system), this gives rise to classical characteristics of the observed properties, in the first place to spatial localization. We investigate to what extent semi-classical behavior of the object system itself (as opposed to the observational system) is needed for the emergence of classicality. Decoherence is an essential element in the mechanism of observation that we assume, but it turns out that in our approach no environment-induced decoherence on the level of the object system is required for the emergence of classical properties.  相似文献   

5.
In this paper we list some minimal requirements for a physically natural, straightforwardly realist interpretation of non-relativistic quantum mechanics. The goal is to characterize what one might call a simple realism of quantum systems, and of the observables associated with them.Simple realism as developed here is a generalized interpretation-scheme, one that abstracts important shared features of Einsteinian naive realism, the so-called modal interpretations, and the orthodox interpretation itself. Some such schemes run afoul of the classic no-go theorems, while others do not. The role of non-commuting observables plays a major role in this success or failure. In particular, we show that if a simple-realist interpretation attributes simultaneously definite values to canonically conjugate observables, then it necessarily falls prey to Kochen-Specker contradictions.This exercise provides some insight into why modal interpretations work, while more generally placing limits on the scope of simple realism itself. In particular, we find that within the framework of simple realism, the only consistent interpretation of the uncertainty relations is the orthodox one. What's more, we point out that similar conclusions are bound to hold for many other non-commuting observables as well.  相似文献   

6.
The aim of this paper is to consider in what sense the modal-Hamiltonian interpretation of quantum mechanics satisfies the physical constraints imposed by the Galilean group. In particular, we show that the only apparent conflict, which follows from boost-transformations, can be overcome when the definition of quantum systems and subsystems is taken into account. On this basis, we apply the interpretation to different well-known models, in order to obtain concrete examples of the previous conceptual conclusions. Finally, we consider the role played by the Casimir operators of the Galilean group in the interpretation.  相似文献   

7.
Modal interpretations constitute a particular approach to associating dynamical variables with physical systems in quantum mechanics. Given the quantum logical constraints that are typically adopted by such interpretations, only certain sets of variables can be taken to be simultaneously definite-valued, and only certain sets of values can be ascribed to these variables at a given time. Moreover, each allowable set of variables and values can be uniquely specified by a single core projector in the Hilbert space associated with the system. In general, the core projector can be one of several possibilities at a given time. In most previous modal interpretations, the different possible core projectors have formed an orthogonal set. This paper investigates the possibility of adopting a non-orthogonal set. It is demonstrated that such non-orthogonality is required if measurements for which the outcome can be predicted with probability 1 are to reveal the pre-existing value of the variable measured, an assumption which has traditionally constituted a strong motivation for the modal approach. The existing framework for modal interpretations is generalized to explicitly accommodate non-orthogonal core projectors.  相似文献   

8.
We construct a model unifying general relativity and quantum mechanics in a broader structure of noncommutative geometry. The geometry in question is that of a transformation groupoid given by the action of a finite group on a space E. We define the algebra of smooth complex valued functions on , with convolution as multiplication, in terms of which the groupoid geometry is developed. Owing to the fact that the group G is finite the model can be computed in full details. We show that by suitable averaging of noncommutative geometric quantities one recovers the standard space-time geometry. The quantum sector of the model is explored in terms of the regular representation of the algebra , and its correspondence with the standard quantum mechanics is established.  相似文献   

9.
Herein we present a whole new approach that leads to the end results of the general theory of relativity via just the law of conservation of energy (broadened to embody the mass and energy equivalence of the special theory of relativity) and quantum mechanics. We start with the following postulate. Postulate: The rest mass of an object bound to a celestial body amounts less than its rest mass measured in empty space, and this, as much as its binding energy vis-á-vis the gravitational field of concern.  相似文献   

10.
The implications of the Copenhagen Variant of the Modal Interpretation of Quantum Mechanics are studied in the context of the quantum theory of measurement. Two formulations of this interpretation are discussed. Both of them imply specifications of the notion of measurement which go beyond the minimal calibration condition of a measurement. The weaker one implies some algebraic and topological constrains on the measurement coupling, whereas the stronger formulation of the same interpretation implies that measurements are necessarily of the first kind.  相似文献   

11.
Familiar quantum mechanics assumes a fixed spacetime geometry. Quantummechanics must therefore be generalized for quantum gravity where spacetime geometry is not fixed but rather a quantum variable. This extended abstract sketches a fully fourdimensional generalized quantum mechnics of cosmological spacetime geometries that is one such generalization.This contribution to the proceedings of the Glafka Conference is an extended abstract of the author's talk there. More details can be found in the references cited at the end of the abstract expecially (Hartle, 1995).  相似文献   

12.
We propose a mathematical structure, based on anoncommutative geometry, which combines essentialaspects of general relativity with those of quantummechanics, and leads to correct limitingcases of both these physical theories. Thenoncommutative geometry of the fundamental level isnonlocal with no space and no time in the usual sense,which emerge only in the transition process to thecommutative case. It is shown that because of the originalnonlocality, quantum gravitational observables should belooked for among correlations of distant phenomenarather than among local effects. We compute the Einstein–Podolsky–Rosen effect; itcan be regarded as a remnant or a shadowof the noncommutative regime of the fundamental level.A toy model is computed predicting the value of thecosmological constant (in the quantum sector) which vanishes whengoing to the standard spacetime physics.  相似文献   

13.
A one-to-one correspondence is established between linearized space-time metrics of general relativity and the wave equations of quantum mechanics. Also, the key role of boundary conditions in distinguishing quantum mechanics from classical mechanics, will emerge naturally from the procedure. Finally, we will find that the methodology will enable us to introduce not only test charges but also test masses by means of gauges.  相似文献   

14.
In Brukner and Zeilinger's interpretation of quantum mechanics, information is introduced as the most fundamental notion and the finiteness of information is considered as an essential feature of quantum systems. They also define a new measure of information which is inherently different from the Shannon information and try to show that the latter is not useful in defining the information content in a quantum object. Here, we show that there are serious problems in their approach which make their efforts unsatisfactory. The finiteness of information does not explain how objective results appear in experiments and what an instantaneous change in the so-called information vector (or catalog of knowledge) really means during the measurement. On the other hand, Brukner and Zeilinger's definition of a new measure of information may lose its significance, when the spin measurement of an elementary system is treated realistically. Hence, the sum of the individual measures of information may not be a conserved value in real experiments.  相似文献   

15.
16.
Quantum mechanics is formulated as a geometric theory on a Hilbert manifold. Images of charts on the manifold are allowed to belong to arbitrary Hilbert spaces of functions including spaces of generalized functions. Tensor equations in this setting, also called functional tensor equations, describe families of functional equations on various Hilbert spaces of functions. The principle of functional relativity is introduced which states that quantum theory (QT) is indeed a functional tensor theory, i.e., it can be described by functional tensor equations. The main equations of QT are shown to be compatible with the principle of functional relativity. By accepting the principle as a hypothesis, we then explain the origin of physical dimensions, provide a geometric interpretation of Planck’s constant, and find a simple model of the two-slit experiment and the process of measurement.  相似文献   

17.
In a recently proposed interpretation of quantum mechanics, U. Mohrhoff advocates original and thought-provoking views on space and time, the definition of macroscopic objects, and the meaning of probability statements. The interpretation also addresses a number of questions about factual events and the nature of reality. The purpose of this note is to examine several issues raised by Mohrhoff's interpretation, and to assess whether it helps providing solutions to the long-standing problems of quantum mechanics.  相似文献   

18.
No Heading Conventional relativistic quantum mechanics, based on the Klein-Gordon equation, does not possess a natural probabilistic interpretation in configuration space. The Bohmian interpretation, in which probabilities play a secondary role, provides a viable interpretation of relativistic quantum mechanics. We formulate the Bohmian interpretation of many-particle wave functions in a Lorentz-covariant way. In contrast with the nonrelativistic case, the relativistic Bohmian interpretation may lead to measurable predictions on particle positions even when the conventional interpretation does not lead to such predictions.  相似文献   

19.
20.
The Copenhagen interpretation is critically considered. A number of ambiguities, inconsistencies and confusions are discussed. It is argued that it is possible to purge the interpretation so as to obtain a consistent and reasonable way to interpret the mathematical formalism of quantum mechanics, which is in agreement with the way this theory is dealt with in experimental practice. In particular, the essential role attributed by the Copenhagen interpretation to measurement is acknowledged. For this reason it is proposed to refer to it as a neo-Copenhagen interpretation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号