首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
我们在[1]中提出并讨论了与R.E.Kalman的最优控制反问题不同的另一类线性最优控制的反问题:任给一渐近稳定的定常线性系统和一个非负二次型性能指标,问是否可以从该稳定系统中分解出一个状态反馈,使得这个状态反馈就是给定指标下的最优控制。本文将上述问题加以推广,对线性离散系统和线性时变系统得出了相应的结论,进而得出[1]中提出的渐近稳定系统和最优系统之间的对应关系是一切线性系统的内在特征。  相似文献   

2.
This paper considers a free terminal time optimal control problem governed by nonlinear time delayed system, where both the terminal time and the control are required to be determined such that a cost function is minimized subject to continuous inequality state constraints. To solve this free terminal time optimal control problem, the control parameterization technique is applied to approximate the control function as a piecewise constant control function, where both the heights and the switching times are regarded as decision variables. In this way, the free terminal time optimal control problem is approximated as a sequence of optimal parameter selection problems governed by nonlinear time delayed systems, each of which can be viewed as a nonlinear optimization problem. Then, a fully informed particle swarm optimization method is adopted to solve the approximate problem. Finally, two free terminal time optimal control problems, including an optimal fishery control problem, are solved by using the proposed method so as to demonstrate its applicability.  相似文献   

3.
The governing dynamics of fluid flow is stated as a system of partial differential equations referred to as the Navier-Stokes system. In industrial and scientific applications, fluid flow control becomes an optimization problem where the governing partial differential equations of the fluid flow are stated as constraints. When discretized, the optimal control of the Navier-Stokes equations leads to large sparse saddle point systems in two levels. In this paper, we consider distributed optimal control for the Stokes system and test the particular case when the arising linear system can be compressed after eliminating the control function. In that case, a system arises in a form which enables the application of an efficient block matrix preconditioner that previously has been applied to solve complex-valued systems in real arithmetic. Under certain conditions, the condition number of the so preconditioned matrix is bounded by 2. The numerical and computational efficiency of the method in terms of number of iterations and execution time is favorably compared with other published methods.  相似文献   

4.
This paper presents an optimal control recycling production inventory system in fuzzy environment. The used items are bought back and then either put on recycling or disposal. Recycled products can be used for the new products which are sold again. Here, the rate of production, recycling and disposal are assumed to be function of time and considered as control variables. The demand inversely depends on the selling price. Again selling price is serviceable stock dependent. The holding costs (for serviceable and non-serviceable items) are fuzzy variables. At first we define the expected values of fuzzy variable, then the system is transferred to the fuzzy expected value model. In this paper, an optimal control approach is proposed to optimize the production, recycling and disposal strategy with respect so that expected value of total profit is maximum. The optimum results are presented both in tabular form and graphically.  相似文献   

5.
We consider a general nonlinear time-delay system with state-delays as control variables. The problem of determining optimal values for the state-delays to minimize overall system cost is a non-standard optimal control problem–called an optimal state-delay control problem–that cannot be solved using existing optimal control techniques. We show that this optimal control problem can be formulated as a nonlinear programming problem in which the cost function is an implicit function of the decision variables. We then develop an efficient numerical method for determining the cost function’s gradient. This method, which involves integrating an auxiliary impulsive system backwards in time, can be combined with any standard gradient-based optimization method to solve the optimal state-delay control problem effectively. We conclude the paper by discussing applications of our approach to parameter identification and delayed feedback control.  相似文献   

6.
The design problem of optimal feedback control for linear systems with input delays is very important in many engineering applications. Usually, the linear systems with input delays are firstly converted into linear systems without delays, and then all the design procedures are based on the delay-free linear systems. In this way, the feedback controllers are not designed in terms of the original states. This paper presents some new closed-form formula in terms of the original states for the delayed optimal feedback control of linear systems with input delays. We firstly reveal the essential role of the input delay in the optimal control design of the linear system with a single input delay: the input delay postpones the action of the optimal control only. Based on this fact, we calculate the delayed optimal control and find that the optimal state can be represented by a simple closed-form formula, so that the delayed optimal feedback control can be obtained in a simple way. We show that the delayed feedback gain matrix can be “smaller” than that for the controlled system with zero input delay, which implies that the input delay can be considered as a positive factor. In addition, we give a general formula for the delayed optimal feedback control of time-variant linear systems with multiple input delays. To show the effectiveness and advantages of the main results, we present five illustrative examples with detailed numerical simulation and comparison.  相似文献   

7.
Bi-level optimal control problems are presented as an extension to classical optimal control problems. Hereby, additional constraints for the primary problem are considered, which depend on the optimal solution of a secondary optimal control problem. A demanding problem is the numerical complexity, since at any point in time the solution of the optimal control problem as well as a complete solution of the secondary problem have to be determined. Hence we deal with two dependent variables in time. The numerical solution of the bi-level problem is illustrated by an application of a container crane. Jerk and energy optimal trajectories with free final time are calculated under the terminal condition that the crane system comes to be at rest at a predefined location. In enlargement additional constraints are investigated to ensure that the crane system can be brought to a rest position by a safety stop at a free but admissible location in minimal time from any state of the trajectory. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
In this paper,we consider an optimal control problem with state constraints,where the control system is described by a mean-field forward-backward stochastic differential equation(MFFBSDE,for short)and the admissible control is mean-field type.Making full use of the backward stochastic differential equation theory,we transform the original control system into an equivalent backward form,i.e.,the equations in the control system are all backward.In addition,Ekeland’s variational principle helps us deal with the state constraints so that we get a stochastic maximum principle which characterizes the necessary condition of the optimal control.We also study a stochastic linear quadratic control problem with state constraints.  相似文献   

9.
In this paper we consider a heat flow in an inhomogeneous body without internal source. There exists special initial and boundary conditions in this system and we intend to find a convenient coefficient of heat conduction for this body so that body cool off as much as possible after definite time. We consider this problem in a general form as an optimal control problem which coefficient of heat conduction is optimal function. Then we replace this problem by another in which we seek to minimize a linear form over a subset of the product of two measures space defined by linear equalities. Then we construct an approximately optimal control.  相似文献   

10.
An optimal control problem for a system involving an interval parameter is considered. The concepts of a universal optimal state and a universal optimal control are introduced. The existence and uniqueness of a universal solution to the interval optimal control problem is proved, and an algorithm for its determination is presented. The interval optimal control problem for a system described by the boundary value problem for a second-order ordinary differential equation is solved as an example.  相似文献   

11.
In this work adaptive and high resolution numerical discretization techniques are demonstrated for solving optimal control of the monodomain equations in cardiac electrophysiology. A monodomain model, which is a well established model for describing the wave propagation of the action potential in the cardiac tissue, will be employed for the numerical experiments. The optimal control problem is considered as a PDE constrained optimization problem. We present an optimal control formulation for the monodomain equations with an extra-cellular current as the control variable which must be determined in such a way that excitations of the transmembrane voltage are damped in an optimal manner.The focus of this work is on the development and implementation of an efficient numerical technique to solve an optimal control problem related to a reaction-diffusions system arising in cardiac electrophysiology. Specifically a Newton-type method for the monodomain model is developed. The numerical treatment is enhanced by using a second order time stepping method and adaptive grid refinement techniques. The numerical results clearly show that super-linear convergence is achieved in practice.  相似文献   

12.
Distributed power grid (DPG) control systems are so highly interconnected that the effects of local disturbances as well as transmission time delays can be amplified as they propagate through a complex network of transmission lines. These effects deteriorate control performance and could possibly destabilize the overall system. In this paper, a new approximated discretization method and digital design for DPG control systems with multiple state, input and output delays as well as a generalized bilinear transformation method are presented. Based on a procedure for the generation of impulse response data, the multiple fractional/integer time-delayed continuous-time system is transformed to a discrete-time model with multiple integer time delays. To implement the digital modeling, the singular value decomposition (SVD) of a Hankel matrix together with an energy loss level is employed to obtain an extended discrete-time state space model. Then, the extended discrete-time state space model of the DPG control system is reformulated as an integer time-delayed discrete-time system by computing its observable canonical form. The proposed method can closely approximate the step response of the original continuous time-delayed DPG control system by choosing various energy loss levels. For completeness, an optimal digital controller design for the DPG control system and a generalized bilinear transformation method with a tunable parameter are also provided, which can re-transform the integer time-delayed discrete-time model to its continuous-time model. Illustrative examples are given to demonstrate the effectiveness of the developed method.  相似文献   

13.
The present paper is concerned with an optimal control problem for then-dimensional diffusion equation with a sequence of Radon measures as generalized control variables. Suppose that a desired final state is not reachable. We enlarge the set of admissible controls and provide a solution to the corresponding moment problem for the diffusion equation, so that the previously chosen desired final state is actually reachable by the action of a generalized control. Then, we minimize an objective function in this extended space, which can be characterized as consisting of infinite sequences of Radon measures which satisfy some constraints. Then, we approximate the action of the optimal sequence by that of a control, and finally develop numerical methods to estimate these nearly optimal controls. Several numerical examples are presented to illustrate these ideas.  相似文献   

14.
In this paper, we will study an indefinite stochastic linear quadratic optimal control problem, where the controlled system is described by a stochastic differential equation with delay. By introducing the relaxed compensator as a novel method, we obtain the well-posedness of this linear quadratic problem for indefinite case. And then, we discuss the uniqueness and existence of the solutions for a kind of anticipated forward–backward stochastic differential delayed equations. Based on this, we derive the solvability of the corresponding stochastic Hamiltonian systems, and give the explicit representation of the optimal control for the linear quadratic problem with delay in an open-loop form. The theoretical results are validated as well on the control problems of engineering and economics under indefinite condition.  相似文献   

15.
The optimal control is determined for a class of systems by assuming the configuration of the feedback loop. The feedback loop consists of an unbiased estimator and controller. The gain matrices of the estimator and the controller are so determined that the mean-squared estimation error and the average value of a quadratic cost functional, respectively, are minimized. This is accomplished by the application of the matrix maximum principle to a distributed parameter system. The results indicate that the optimal estimation and the optimal control can be computed independently (separation principle).This work was supported in part by the Air Force Office of Scientific Research, Grant No. 69-1776.  相似文献   

16.
A semi-analytical direct optimal control solution for strongly excited and dissipative Hamiltonian systems is proposed based on the extended Hamiltonian principle, the Hamilton-Jacobi-Bellman (HJB) equation and its variational integral equation, and the finite time element approximation. The differential extended Hamiltonian equations for structural vibration systems are replaced by the variational integral equation, which can preserve intrinsic system structure. The optimal control law dependent on the value function is determined by the HJB equation so as to satisfy the overall optimality principle. The partial differential equation for the value function is converted into the integral equation with variational weighting. Then the successive solution of optimal control with system state is designed. The two variational integral equations are applied to sequential time elements and transformed into the algebraic equations by using the finite time element approximation. The direct optimal control on each time element is obtained respectively by solving the algebraic equations, which is unconstrained by the system state observed. The proposed control algorithm is applicable to linear and nonlinear systems with the quadratic performance index, and takes into account the effects of external excitations measured on control. Numerical examples are given to illustrate the optimal control effectiveness.  相似文献   

17.
In this paper, we study utility-based indifference pricing and hedging of a contingent claim in a continuous-time, Markov, regime-switching model. The market in this model is incomplete, so there is more than one price kernel. We specify the parametric form of price kernels so that both market risk and economic risk are taken into account. The pricing and hedging problem is formulated as a stochastic optimal control problem and is discussed using the dynamic programming approach. A verification theorem for the Hamilton-Jacobi-Bellman (HJB) solution to the problem is given. An issuer’s price kernel is obtained from a solution of a system of linear programming problems and an optimal hedged portfolio is determined.  相似文献   

18.
We study parametric optimal control problems governed by a system of time-dependent partial differential equations (PDE) and subject to additional control and state constraints. An approach is presented to compute the optimal control functions and the so-called sensitivity differentials of the optimal solution with respect to perturbations. This information plays an important role in the analysis of optimal solutions as well as in real-time optimal control.The method of lines is used to transform the perturbed PDE system into a large system of ordinary differential equations. A subsequent discretization then transcribes parametric ODE optimal control problems into perturbed nonlinear programming problems (NLP), which can be solved efficiently by SQP methods.Second-order sufficient conditions can be checked numerically and we propose to apply an NLP-based approach for the robust computation of the sensitivity differentials of the optimal solutions with respect to the perturbation parameters. The numerical method is illustrated by the optimal control and sensitivity analysis of the Burgers equation.Communicated by H. J. Pesch  相似文献   

19.
We formulate an S-I-R (Susceptible, Infected, Immune) spatiotemporal epidemic model as a system of coupled parabolic partial differential equations with no-flux boundary conditions. Immunity is gained through vaccination with the vaccine distribution considered a control variable. The objective is to characterize an optimal control, a vaccine program which minimizes the number of infected individuals and the costs associated with vaccination over a finite space and time domain. We prove existence of solutions to the state system and existence of an optimal control, as well as derive corresponding sensitivity and adjoint equations. Techniques of optimal control theory are then employed to obtain the optimal control characterization in terms of state and adjoint functions. To illustrate solutions, parameter values are chosen to model the spread of rabies in raccoons. Optimal distributions of oral rabies vaccine baits for homogeneous and heterogeneous spatial domains are compared. Numerical results reveal that natural land features affecting raccoon movement and the relocation of raccoons by humans can considerably alter the design of a cost-effective vaccination regime. We show that the use of optimal control theory in mathematical models can yield immediate insight as to when, where, and what degree control measures should be implemented.  相似文献   

20.
We consider an optimal guaranteed control problem for a linear time-varying system that is subject to unknown bounded disturbances. A control strategy is defined that guarantees steering the system to a given terminal set for any realization of disturbances and takes into account that at one future time instant the control loop will be closed. An efficient method for constructing the optimal control strategy and an algorithm for optimal feedback control based on this type of strategies are proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号