首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electrical conductivity of aluminium doped zinc oxide (AZO, ZnO:Al) materials depends on doping induced defects and grain structure. This study aims at relating macroscopic electrical conductivity of AZO nanoparticles with their atomic structure, which is non-trivial because the derived materials are heavily disordered and heterogeneous in nature. For this purpose we synthesized AZO nanoparticles with different doping levels and narrow size distribution by a microwave assisted polyol method followed by drying and a reductive treatment with forming gas. From these particles electrically conductive, optically transparent films were obtained by spin-coating. Characterization involved energy-dispersive X-ray analysis, wet chemical analysis, X-ray diffraction, electron microscopy and dynamic light scattering, which provided a basis for a detailed structural solid-state NMR study. A multinuclear ((27)Al, (13)C, (1)H) spectroscopic investigation required a number of 1D MAS NMR and 2D MAS NMR techniques (T(1)-measurements, (27)Al-MQMAS, (27)Al-(1)H 2D-PRESTO-III heteronuclear correlation spectroscopy), which were corroborated by quantum chemical calculations with an embedded cluster method (EEIM) at the DFT level. From the combined data we conclude that only a small part of the provided Al is incorporated into the ZnO structure by substitution of Zn. The related (27)Al NMR signal undergoes a Knight shift when the material is subjected to a reductive treatment with forming gas. At higher (formal) doping levels Al forms insulating (Al, H and C containing) side-phases, which cover the surface of the ZnO:Al particles and increase the sheet resistivity of spin-coated material. Moreover, calculated (27)Al quadrupole coupling constants serve as a spectroscopic fingerprint by which previously suggested point-defects can be identified and in their great majority be ruled out.  相似文献   

2.
3.
It is shown how coherence lifetimes in solid-state NMR experiments can be controlled. New decoupling schemes are introduced which actively optimize dephasing times, providing increases of up to a factor of 2 with respect to the best existing schemes. The new schemes are implemented in transverse-dephasing-optimized (TDOP) NMR experiments for the disorded solid cellulose, and for a microcrystalline protein, where sensitivity improvements of up to a factor of 5 are obtained.  相似文献   

4.
Lanthanum-139 NMR spectra of stationary samples of several solid La(III) coordination compounds have been obtained at applied magnetic fields of 11.75 and 17.60 T. The breadth and shape of the 139La NMR spectra of the central transition are dominated by the interaction between the 139La nuclear quadrupole moment and the electric field gradient (EFG) at that nucleus; however, the influence of chemical-shift anisotropy on the NMR spectra is non-negligible for the majority of the compounds investigated. Analysis of the experimental NMR spectra reveals that the 139La quadrupolar coupling constants (C(Q)) range from 10.0 to 35.6 MHz, the spans of the chemical-shift tensor (Omega) range from 50 to 260 ppm, and the isotropic chemical shifts (delta(iso)) range from -80 to 178 ppm. In general, there is a correlation between the magnitudes of C(Q) and Omega, and delta(iso) is shown to depend on the La coordination number. Magnetic-shielding tensors, calculated by using relativistic zeroth-order regular approximation density functional theory (ZORA-DFT) and incorporating scalar only or scalar plus spin-orbit relativistic effects, qualitatively reproduce the experimental chemical-shift tensors. In general, the inclusion of spin-orbit coupling yields results that are in better agreement with those from the experiment. The magnetic-shielding calculations and experimentally determined Euler angles can be used to predict the orientation of the chemical-shift and EFG tensors in the molecular frame. This study demonstrates that solid-state 139La NMR spectroscopy is a useful characterization method and can provide insight into the molecular structure of lanthanum coordination compounds.  相似文献   

5.
The investigation of 1H-1H spin-diffusion build-up curves using a rate matrix analysis approach shows that high-resolution magic angle spinning NMR of protons, applied to powdered organic compounds, provides a method to probe crystalline arrangements. The comparison between experimental 1H data and simulation is shown to depend strongly on the parameters of the crystal structure, for example on the unit cell parameters or the orientation of the molecule in the unit cell, and those parameters are experimentally determined for a model organic compound.  相似文献   

6.
A new spinning-angle-encoding spin-echo solid-state NMR approach is used to accurately determine the dipolar coupling corresponding to a C-C distance over 4 ? in a fully labelled dipeptide. The dipolar coupling dependent spin-echo modulation was recorded off magic angle, switching back to the magic angle for the acquisition of the free-induction decay, so as to obtain optimum sensitivity. The retention of both ideal resolution and long-range distance sensitivity was achieved by redesigning a 600 MHz HX MAS NMR probe to provide fast angle switching during the NMR experiment: for 1.8 mm rotors, angle changes of up to ~5° in ~10 ms were achieved at 12 kHz MAS. A new experimental design that combines a reference and a dipolar-modulated experiment and a master-curve approach to data interpretation is presented.  相似文献   

7.
By the use of one-dimensional (1H,13C, and15N) and two-dimensional NMR spectra (H,H-COSY, H,C-COSY, and NOESY), it has been established that the phenylazo derivative of chromotropic acid in DMSO has a quinonehydrazone structure; under normal conditions, there is no azo-quinonehydrazone tautomerism. Spectral evidence has been found for the distribution of intramolecular hydrogen bonds.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 11, pp. 2530–2535, November, 1989.  相似文献   

8.
Duan X  Yuan D  Yu F 《Inorganic chemistry》2011,50(12):5460-5467
Co(x)Zn(1-x)Al(2)O(4) (x = 0.01-0.6) nanoparticles were synthesized by the citrate sol-gel method and were characterized by X-ray powder diffraction and transmission electron microscopy to identify the crystalline phase and determine the particle size. X-ray photoelectron spectroscopy and (27)Al solid-state NMR spectroscopy were used to study the distribution of the cations in the tetrahedral and octahedral sites in Co(x)Zn(1-x)Al(2)O(4) nanoparticles as a function of particle size and composition. The results show that all of the as-synthesized samples exhibit spinel-type single phase; the crystallite size of the samples is about 20-50 nm and increases with increasing annealing temperature and decreases with Co-enrichment. Zn(2+) ions are located in large proportions in the tetrahedral sites and in small proportions in the octahedral sites in Co(x)Zn(1-x)Al(2)O(4) nanoparticles. The fraction of octahedral Zn(2+) increases with increasing Co concentration and decreases with increasing particle size. Besides the tetrahedral and octahedral coordinations, the presence of the second octahedrally coordinated Al(3+) ions is observed in the nanoparticles. The change of the inversion parameter (2 times the fraction of Al(3+) ions in tetrahedral sites) with Co concentration and particle size is consistent with that of the Zn fraction in octahedral sites. Analysis of the absorption properties indicates that Co(2+) ions are located in the tetrahedral sites as well as in the octahedral sites in the nanoparticles. The inversion degree of Co(2+) decreases with increasing particle size.  相似文献   

9.
10.
A novel approach for detection of ligand binding to a protein in solid samples is described. Hydrated precipitates of the anti-apoptotic protein Bcl-xL show well-resolved (13)C-(13)C 2D solid-state NMR spectra that allow site-specific assignment of resonances for many residues in uniformly (13)C-enriched samples. Binding of a small peptide or drug-like organic molecule leads to changes in the chemical shift of resonances from multiple residues in the protein that can be monitored to characterize binding. Differential chemical shifts can be used to distinguish between direct protein-ligand contacts and small conformational changes of the protein induced by ligand binding. The agreement with prior solution-state NMR results indicates that the binding pocket in solid and liquid samples is similar for this protein. Advantages of different labeling schemes involving selective (13)C enrichment of methyl groups of Ala, Val, Leu, and Ile (Cdelta1) for characterizing protein-ligand interactions are also discussed. It is demonstrated that high-resolution solid-state NMR spectroscopy on uniformly or extensively (13)C-enriched samples has the potential to screen proteins of moderate size ( approximately 20 kDa) for ligand binding as hydrated solids. The results presented here suggest the possibility of using solid-state NMR to study ligand binding in proteins not amenable to solution NMR.  相似文献   

11.
 The on-line detection of emulsion polymerization processes by means of solid-state NMR spectroscopy is demonstrated for the first time using poly(butyl acrylate) as a model system. Relatively short time intervals are accessible via 1H detection while the use of 13C NMR spectroscopy results in an increased spectral resolution. Details of sample preparation and experimental techniques are given, while remaining artifacts of the preliminary results will be addressed in further investigations. Received: 7 November 1997 Accepted: 5 January 1998  相似文献   

12.
11B and 31P MAS NMR spectroscopy of three borophosphates was used to monitor their phase composition via the isotropic chemical shifts. CaBPO5 and BPO4 represent nearly pure samples, SrBPO5 contains β-Sr2P2O7 as well as BPO4 as impurities. The anisotropic chemical shift data provide additional information on the geometry and connectivity of the BO4 and PO4 building units. Received: 25 July 1996 / Revised: 19 August 1996 / Accepted: 23 August 1996  相似文献   

13.
11B and 31P MAS NMR spectroscopy of three borophosphates was used to monitor their phase composition via the isotropic chemical shifts. CaBPO5 and BPO4 represent nearly pure samples, SrBPO5 contains β-Sr2P2O7 as well as BPO4 as impurities. The anisotropic chemical shift data provide additional information on the geometry and connectivity of the BO4 and PO4 building units. Received: 25 July 1996 / Revised: 19 August 1996 / Accepted: 23 August 1996  相似文献   

14.
Research on Chemical Intermediates - Lanthanum (La)-doped tin dioxide (SnO2) nanoparticles were synthesized by a modified sol–gel method at room temperature. The samples were characterized by...  相似文献   

15.
Spin-exchange experiments are useful for improving the resolution and establishment of sequential assignments in solid-state NMR spectra of uniformly (15)N-labeled proteins oriented macroscopically in phospholipid bilayers. To exploit this advantage fully, it is crucial that the diagonal peaks in the two-dimensional exchange spectra are suppressed. This may be accomplished using the recent pure-exchange (PUREX) experiments, which, however, suffer from up to a threefold reduction of the cross-peak intensity relative to experiments without diagonal-peak suppression. This loss in sensitivity may severely hamper the applicability for the study of membrane proteins. In this paper, we present a two-dimensional exchange experiment (iPUREX) which improves the PUREX sensitivity by 50%. The performance of iPUREX is demonstrated experimentally by proton-mediated (15)N-(15)N spin-exchange experiments for a (15)N-labeled N-acetyl-L-valyl-L-leucine dipeptide. The relevance of exchange experiments with diagonal-peak suppression for large, uniformly (15)N-labeled membrane proteins in oriented phospholipid bilayers is demonstrated numerically for the G-protein coupled receptor rhodopsin.  相似文献   

16.
A refocused INEPT through-bond coherence transfer technique is demonstrated for NMR of rigid organic solids and is shown to provide a valuable building block for the development of NMR correlation experiments in biological solids. The use of efficient proton homonuclear dipolar decoupling in combination with a direct spectral optimization procedure provides minimization of the transverse dephasing of coherences and leads to very efficient through-bond (1)H-(13)C INEPT transfer for crystalline organic compounds. Application of this technique to 2D heteronuclear correlation spectroscopy leads to up to a factor of 3 increase in sensitivity for a carbon-13 enriched sample in comparison to standard through-bond experiments and provides excellent selectivity for one-bond transfer. The method is demonstrated on a microcrystalline sample of the protein Crh (2 x 10.4 kDa).  相似文献   

17.
Results of the 7Li, 19F, and 23Na NMR studies of ionic mobility in bismuth fluoride glasses in the systems BiF3-LiF and BiF3-MF-ZrF4 (M = Li, Na, K, Cs) are summarized. Analysis of the 7Li, 19F, and 23Na NMR spectra made it possible to reveal changes in the nature of ion motions in the fluoride, lithium and sodium sublattices of glasses upon temperature variation and to determine their types. The temperature ranges were found where main types of ion motions in the tested glasses are represented by diffusion of lithium ions, reorientations of fluorine-containing groups constituting the glass network, and diffusion of fluorine ions. The role of alkali cations in the formation of ionic mobility in bismuth fluorozirconate glasses is considered.  相似文献   

18.
High-resolution solid-state (2)H MAS NMR studies of the α and γ polymorphs of fully deuterated glycine (glycine-d(5)) are reported. Analysis of spinning sideband patterns is used to determine the (2)H quadrupole interaction parameters, and is shown to yield good agreement with the corresponding parameters determined from single-crystal (2)H NMR measurements (the maximum deviation in quadrupole coupling constants determined from these two approaches is only 1%). From analysis of simulated (2)H MAS NMR sideband patterns as a function of reorientational jump frequency (κ) for the -N(+)D(3) group in glycine-d(5), the experimentally observed differences in the (2)H MAS NMR spectrum for the -N(+)D(3) deutrons in the α and γ polymorphs is attributed to differences in the rate of reorientation of the -N(+)D(3) group. These simulations show severe broadening of the (2)H MAS NMR signal in the intermediate motion regime, suggesting that deuterons undergoing reorientational motions at rates in the range κ ≈ 10(4)-10(6) s(-1) are likely to be undetectable in (2)H MAS NMR measurements for materials with natural isotopic abundances. The (1)H NMR chemical shifts for the α and γ polymorphs of glycine have been determined from the (2)H MAS NMR results, taking into account the known second-order shift. Further quantum mechanical calculations of (2)H quadrupole interaction parameters and (1)H chemical shifts reveal the structural dependence of these parameters in the two polymorphs and suggest that the existence of two short intermolecular C-H···O contacts for one of the H atoms of the >CH(2) group in the α polymorph have a significant influence on the (2)H quadrupole coupling and (1)H chemical shift for this site.  相似文献   

19.
NMR spectra of (14)N (spin I=1) are obtained by indirect detection in powders spinning at the magic angle. The method relies on the transfer of coherence from a neighboring "spy" nucleus with S=1/2, such as (13)C or (1)H, to single- or double-quantum transitions of (14)N nuclei. The transfer of coherence can occur through a combination of scalar and residual dipolar splittings (RDS); the latter are also known as second-order quadrupole-dipole cross terms. The two-dimensional NMR spectra reveal powder patterns determined by second- and third-order quadrupolar couplings. These spectra depend on the quadrupolar coupling constant C(Q) (typically a few megahertz), on the asymmetry parameter eta(Q) of the (14)N nucleus, and on the orientation of the internuclear vector r(IS) between the I ((14)N) and S (spy) nuclei with respect to the quadrupolar tensor. These parameters, which can be subject to motional averaging, can reveal valuable information about the structure and dynamics of nitrogen-containing solids. Application of this technique to various amino acids, either enriched in (13)C or with natural carbon isotope abundance, with spectra recorded at various magnetic fields, illustrates the scope of the method.  相似文献   

20.
NMR and impedance spectroscopy are used to study the ionic mobility and conductivity in crystalline samples in PbSnF4-MF systems (M = Li, Na, K) in a 150?C473 K temperature range. The 19F NMR spectral parameters, types of ionic motion, and ionic conductivity value in the PbSnF4 compound doped with alkali metal fluoride is found to be determined by the temperature, nature, and concentration of an alkali cation. The specific conductivity of the crystalline samples in PbSnF4-MF systems (M = Li, Na, K) is rather high at room temperature and hence, it seems possible to apply them in the development of functional materials with high ionic (superionic) conductivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号