首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The study of the catalytic pyrolysis of mixtures of fuel and polymers is interesting in order to explore the possibility of using commercial fluid catalytic cracking (FCC) units or similar processes for recycling plastic wastes. In this work, different samples of vacuum gas oil (VGO), polyethylene (PE) and vacuum gas oil-polyethylene blends (VGO-PE) have been studied by thermogravimetric analysis. Vacuum gas oil-polyethylene blends with 1, 2.5, 5, 7.5 and 10% w/w of PE were prepared by continuously stirring for 120 min, at 60 rpm at 120 °C, and afterwards, the effect of different catalysts (HZSM-5, HUSY, HBeta zeolites, FCC catalysts and Al-MCM-41) on the decomposition of these mixtures was studied. Moreover, the deposition of coke over each catalyst was studied by thermogravimetric analysis in an oxidant atmosphere. The catalytic pyrolysis behaviour of the VGO-PE mixtures indicates a two-step process, the degradation of the VGO and the PE fraction being almost independent. The degradation or evaporation of the VGO fraction is only slightly affected by the presence of the catalyst, whereas the PE fraction showed similar behaviour as that already described in the literature for the pure polymer. The results show that the HBeta zeolite is the most active catalyst for the decomposition of the mixtures, and that the ZSM-5 zeolite is the catalyst with the lowest amount of coke formation. These results are in very good agreement with the structural characteristics of the different catalysts studied, i.e., with their pore size and acidity.  相似文献   

2.
加拿大合成原油瓦斯油裂解反应规律与产物生成机理   总被引:1,自引:0,他引:1  
利用小型固定流化床实验装置研究了加拿大合成原油重瓦斯油(HGO)和轻瓦斯油(LGO)的催化裂解性能和热裂解性能。HGO和LGO催化裂解总低碳烯烃(乙烯+丙烯+丁烯)产率在660℃附近达到最大值,分别为33.8%和35.6%。HGO和LGO热裂解反应程度很大,700℃的转化率分别为66.7%和76.3%。HGO热裂解总低碳烯烃的产率在680℃达到最大值27.9%。通过对比分析催化裂解与热裂解气体产物产率的比值发现,催化剂的加入促进了乙烯和液化气的生成,同时抑制了甲烷和乙烷的生成。研究结果揭示了小分子烃类的生成机理,甲烷和乙烷主要是自由基反应的产物,乙烯和液化气是自由基反应和正碳离子反应的共同产物。  相似文献   

3.
Thermal analysis-based preparation of blends of selected polymer wastes with pyrolysis oil was studied and results are presented. Selected thermomechanical methods were evaluated as regards the determination of property data of the resulting products. When pyrolysis oil was used in amounts ≥5mass%, homogeneous blends could be prepared with PE and PET wastes; the blends were found to be processible by compression molding or injection molding. Blends prepared from waste PVC and pyrolysis oil were brittle and hard. The following properties could be determinated for the thermal products: ring-and-ball softening point, Vicat softening point, melt flow index, and impact strength. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
The chemical reactions occurring in the thermal treatment of polycarbonate/polybuthyleneterephthalate (PC/PBT) blends have been investigated by gradual heating (10°C/min) using thermogravimetry and direct pyrolysis into the mass spectrometer. Exchange reactions occur already in the temperature range below 300°C but the transesterification equilibrium is affected by the evolution of thermal degradation products. Buthylenecarbonate, was detected in the first decomposition stage (320–380°C), which is evolved together with a series of cyclic compounds containing units of PC and PBT, in varying ratios. The overall thermal reaction evolves towards the formation of the most thermally stable polymer, i.e., a totally aromatic polyester (polymer III , Table I), which was found to be the end-product of the thermal processes occurring in the system investigated. The thermal decomposition products obtained from the PC/PBT blends in the range 320–600°C have mass sufficiently high to be structurally significant, since they contain at least one copolymer repeating unit. The reactions occurring in the thermal treatment of the PC/PBT blend are discussed in detail. © 1993 John Wiley & Sons, Inc.  相似文献   

5.
The hydrotreatment of vacuum distillates under suitable operating conditions, mainly the conversion and partial pressure of hydrogen, can be used to feed a steam cracker. This hydrotreatment substantially increases the production of the products sought while preventing the formation of resins and asphaltenes.The thermal decomposition of vacuum gas-oil (VGO) and hydrotreated vacuum distillates (HVD) in the presence of steam (steam cracking) was studied in a plug flow reactor around 1053 K. The tubular reactor was a wound Incology steel tube (4 mm I.D.) heated by high-frequency induction. The total pressure in the reactor was slightly above atmospheric. By analysis (by gas and liquid chromatography, mass spectrometry, distillation and simulated distillation and asphaltene extraction) of the feedstocks and the steam cracking products, we observed that hydrotreatment of VGO transforms the initial polyaromatics into less condensed and more hydrogenated products that do not produce resins and asphaltenes during steam cracking. The cracking gasoline and the light pyrolysis products, essentially made up of α-olefins, are primary products.Considering the extreme complexity of middle and heavy steam cracking fractions, the grouping of products by families (polyaromatics, resins, asphaltenes) enabled a kinetic-semiquantitative analysis of the data to be made, and from this secondary nature of the asphaltenes could be defined together with the primary nature of the polyaromatics and resin.  相似文献   

6.
在小型固定流化床装置上采用酸性催化剂进行了多系列不同反应深度的催化裂化实验,对大庆VGO催化裂化过程中发生的质子化裂化反应进行了初步的研究。在重质油的催化裂化过程中会出现二次质子化裂化反应。二次质子化裂化反应主要是由于汽油中烷烃重新在酸性催化剂上形成五配位正碳离子随后分解所造成,其产生的原因主要是由于反应后期催化剂对反应中间产物的选择性吸附改变所致。二次质子化裂化反应对温度不敏感。大庆VGO在500℃下反应时二次质子化裂化反应约占整个质子化裂化反应的60%。  相似文献   

7.
Petroleum natural gas (PNG) reserves will last even when the oil reserves are exhausted, requiring the development of technologies for PNG storage. Activated charcoal is the best material for such a purpose. Under vacuum samples of aroeira (Astronium Urundeuva) underwent pyrolysis in diverse conditions. The samples were characterized by thermal analysis, scanning electronic microscopy and infrared spectroscopy. When the pyrolysis temperature increased, mechanical anisotropy resistance tended to disappear. The pyrolysis became complete only at high temperatures and using a long time of treatment.  相似文献   

8.
采用热重分析法(TGA)及在线裂解气相色谱-质谱联用仪(Py/GC - MS)研究了烟草中绿原酸在不同氛围下的热解行为及其含量分布规律.先用TGA确定了绿原酸在氮气氛围中的主要热失重区间,选取4个典型的温度点,再结合卷烟在高温燃烧区的3个温度点,分别在惰性(氦气)和有氧(含9%氧气的氮氧混合气)氛围中进行热裂解实验,对...  相似文献   

9.
用热重红外光谱联用技术研究混煤热解特性   总被引:16,自引:4,他引:16  
用热重分析仪和傅里叶红外光谱仪,对混煤在惰性气氛中的慢速热解特性进行了动态分析,考察了煤种、掺混比例以及加热速率对热解的影响。结果表明,混煤的热解与单煤的热解有相似之处,热解组分的析出随温度的变化规律一致,但其组分析出量并不是单煤热解析出量的简单叠加。由于掺混煤种间的相互作用,混煤热解气体在析出时间和析出量上均发生了变化。通过对红外吸收光谱的分析,发现混煤热解气体析出规律受掺混煤种的影响很大,高活性煤种的存在会降低混煤热解的初析温度,增加热解气体的析出量,其掺混比例越高,影响也越明显。  相似文献   

10.
基于热重红外联用分析的PE、PS、PVC热解机理研究   总被引:3,自引:1,他引:2  
利用TGA-FTIR联用技术考察了PE、PS、PVC三种典型塑料的热解特性。结果表明,热稳定性从弱到强依次为PVC、PS、PE。PE热解反应过程为典型的一段式反应,红外光谱分析结果表明,PE热解过程为无规则断链形式,生成产物成分复杂,且随热解过程而改变,开始以饱和烃基团为主,中后期以烯烃基团为主,同时有少量炔烃;PS热解过程同样为一段式反应,红外光谱显示主要热解产物为苯乙烯单体,说明热解过程主要是苯乙烯的解聚过程;PVC热解过程较为复杂,主要分为脱氯阶段和共轭多烯重构阶段,红外光谱结果表明,产物中有芳香族化合物。脱氯过程和共轭多烯重构、环化过程在时间和空间上有重合,给二噁英类污染物的生成制造了可能。  相似文献   

11.
Polyphosphazenes represent a unique class of polymers with a backbone composed of alternating phosphorous and nitrogen atoms. The thermal behaviour and decomposition of a variety of polyphosphazenes depends on the type of side groups present. Especially those that bear aryloxy side groups, possess a high temperature stability as well as excellent flame resistance. Pyrolysis-capillary gas chromatography has been used in a study of three polyphosphazene samples for thermal stability characterisation. Degradation products were detected with three single detectors for flame ionisation (FID), nitrogen-phosphorous sensitivity (NPD) and mass spectrometry (MSD) at different pyrolysis temperatures ranging from 300°C up to 800°C. The NPD responses for phosphorous or nitrogen fragments of polyphosphazenes have been used for the construction of degradation product schemes and the examination of the thermal stability of the polyphosphazene’s backbone. Partial identification of the degradation products present in the gaseous phase was achieved by MSD. The polyphosphazenes thermal degradation conversion rates were at a maximum at 450–500°C. At various pyrolysis temperatures, the calculated N/P peak area ratio is a function of the degree of polyphosphazene-N=P-chain degradation, and reflective of the nitrogen — phosphorous detector sensitivity. NPD proved to be suitable tool for characterization of polyphospazene thermal stability.  相似文献   

12.
To obtain insight into the catalytic reaction mechanism of biodiesels over ZSM-5 zeolites, the pyrolysis and catalytic pyrolysis of methyl butanoate, a biodiesel surrogate, with H-type ZSM-5 (HZSM-5) were performed in a flow reactor under atmospheric pressure. The pyrolysis products were identified and quantified using gas chromatography-mass spectrometry (GC-MS). Kinetic modelling and experimental results revealed that H-atom abstraction in the gas phase was the primary pathway for methyl butanoate decomposition during pyrolysis, but dissociating to ketene and methanol over HZSM-5 was the primary pathway for methyl butanoate consumption during catalytic pyrolysis. The initial decomposition temperature of methyl butanoate was reduced by approximately 300 K over HZSM-5 compared to that for the uncatalyzed reaction. In addition, the apparent activation energies of methyl butanoate under catalytic pyrolysis and homogeneous pyrolysis conditions were obtained using the Arrhenius equation. The significantly reduced apparent activation energy confirmed the catalytic performance of HZSM-5 for methyl butanoate pyrolysis. The activation temperature may also affect some catalytic properties of HZSM-5. Overall, this study can be used to guide subsequent catalytic combustion for practical biodiesel fuels.  相似文献   

13.
The pyrolysis of polyethylene(PE)/polypropylene(PP)/polystyrene(PS) mixed with high impact polystyrene (HIPS-Br) containing decabromo diphenylethane (DDE) as a brominated flame retardant with antimony trioxide as a synergist was performed under controlled temperature programmed pyrolysis (two steps) conditions to understand the decomposition behaviour and evolution of brominated hydrocarbons from flame-retardant additives. The liquid products were extensively analyzed by gas chromatographs equipped with FID, ECD, MSD, TCD, AED and FT-IR. The solid residue samples were analyzed by powder X-ray diffraction and combustion followed by ion-chromatography. The controlled pyrolysis of PE/PP/PS/HIPS-Br significantly affected the decomposition behaviour of HIPS-Br and subsequently the formation of decomposition products. GC/ECD analysis confirmed that the brominated hydrocarbons were concentrated in step 1 liquid products leaving less brominated hydrocarbons in the step 2 liquid products, similar to the decabromo diphenyl ether flame retardant containing mixed plastics. The yield of liquid products in step 1 from 3P/DDE-Sb(5) was 5 wt% and from 3P/DDE-Sb(0) was 2.4 wt%. The presence of antimony in the DDE containing plastics affected the yield of liquid, gas and residue products. ECD analysis showed that the presence of antimony increased the Br containing hydrocarbons and step 1 has 3-4 times higher brominated compounds than step 2 hydrocarbons in both the samples.  相似文献   

14.
In this work, the early degradation step of the pyrolysis of some polymers in the presence of certain catalysts has been studied using thermogravimetric analysis (TGA). Three commercial polymers (PE, PP and EVA) and three catalysts were studied (ZSM-5, MCM-41a, and MCM-41b), and the MCM-41a catalyst has been selected for the analysis of the earlier steps of the pyrolysis process carried out in the presence of catalysts. Several cycles of heating–cooling were performed using a thermobalance, in order to analyze the influence of the first stages of decomposition on the activity of the more accessible active sites involved. In this way, the behaviour of the polymer–catalyst mixtures (20% (w/w) of catalyst) was studied and compared with that observed in the corresponding thermal degradation as well as in the pyrolysis in the presence of catalysts, in a single heating cycle.The results obtained clearly show the existence of an early degradation step. For a polymer–catalyst system with low steric hindrances such as PE-MCM-41, this early degradation step causes a noticeable decrease of the catalyst activity for the main decomposition step (i.e., cracking of the chain). The decrease of the catalytic activity is lower for a polymer–catalyst system with higher steric restrictions, as occurs in the EVA-MCM-41 degradation process. However, in this case, the catalyst activity in the first decomposition step (i.e., the loss of the acetoxi groups) is noticeable decreased after one pyrolysis run, thus reflecting that the active sites involved are mainly the most accessible ones.  相似文献   

15.
建立了一种简单的在线检测煤热解过程中气态硫选出的方法-程序升温热解-火焰光度检测法(TPD-FPD),该方法适用于煤的连续热处理过程。检测装置由可实现程序升温的微型热解反应器(TPD)、在线的火焰光度检测器(FPD)及数据采集系统构成。应用此方法分别对神木煤、依兰煤进行了分析,得到了其气态硫选出的动态特征谱图。并通过对比实验验证了此方法的准确性及重复性。结果表明:TPD-FPD是一种研究热解过程中煤中硫向气态迁移的有效的在线分析手段。  相似文献   

16.
In this work, a study of the degradation of PE and an EVA copolymer under air atmosphere, in the presence and absence of mesoporous MCM-41, was carried out using thermogravimetric analysis (TGA), focusing on the analysis of the EVA behaviour during this the process. The results obtained show that the air atmosphere causes an increase of the complexity of the process, with respect to the thermal and catalytic pyrolysis in N2 atmosphere, exhibiting more decomposition steps. The results obtained for both polymers show that the presence of MCM-41 does not practically affect the temperature of the oxidative decomposition processes, but a clear effect has been found on the main step of degradation, that supports the existence of cracking or incomplete oxidation reactions, and clearly it enhances the carbonaceous residue formation.  相似文献   

17.
Random copolyesters of dimethyl terephthalate (DMT), ethylene glycol (EG), and butane-1,4-diol (BD) and the homopolyesters poly(ethylene terephthalate) (PET) and poly(butylene terephthalate) (PBT) have been subjected to degradation and pyrolysis studies. Differential thermal analysis (DTA) showed that the decomposition temperature is dependent on the percentage of EG and BD present in the copolyesters. Thermal volatilization analysis (TVA) also showed that the decomposition temperature is dependent on the percentage of EG and BD present in the copolyesters. The trend for the decomposition temperatures obtained from TVA studies for these copolyesters is similar to such other thermal properties as melting temperature Tm, ΔHf, ΔHc, etc. The subambient thermal volatilization analysis (SATVA) curves obtained for these polymers are also presented. The SATVA curve is the fingerprint of the total volatile products formed during the degradation in high vacuum. The isothermal pyrolysis of these materials was carried out in high vacuum at 450°C. The products formed were separated in a gas chromatograph and were subsequently identified in a mass spectrometer. The major pyrolysis products from PBT were butadiene and tetrahydrofuran, whereas those from PET were ethylene and acetaldehyde. The ratio of acetaldehyde to ethylene increases with the EG content in the copolyester, suggesting a different decomposition mechanism compared to the decomposition mechanism of PBT and PET.  相似文献   

18.
Summary A simple and robust approach to on-line oxidative pyrolysis-capillary gas chromatographymass spectrometry (OxPYR-CGC-MS) analysis is presented. Only minor adaptations on a conventional filament pyrolysis unit are required. Air is introduced into the pyrolyzer through a bypass-valve during pyrolysis and the degradation products are focused in a cryo-cooled programmed temperature vaporization (PTV) injector. Before GC analysis, the system is switched back to helium and after equilibration PTV injection is carried out. The potential of the system is illustrated with normal and oxidative pyrolyses of polystyrene (PS) and polyethylene (PE).  相似文献   

19.
The products of the pyrolysis of polytetrafluoroethylene (PTFE) in a vacuum modified under the action of gamma irradiation in the molten state were studied mass spectrometrically at various temperatures. Radiation modification was found to cause the appearance of an additional stage of the thermal decomposition of PTFE at decreased temperatures compared with not irradiated PTFE. The chemical composition of the gas components of thermal decomposition substantially changes after the irradiation of PTFE, which increases the molecular weight of decomposition products. A comparison with the results of an additional study of the thermal decomposition of tetrafluoroethylene copolymer with hexafluoropropylene is evidence of the formation of side CF3 groups in PTFE under irradiation. Data on the composition of gaseous products of PTFE radiolysis under gamma irradiation were obtained.  相似文献   

20.
In this first of two papers, the thermal decomposition of bisphenol A bis(diphenyl phosphate)-flame retarded polycarbonate (PC) blends with different impact modifiers was studied. The impact modifiers were an acrylonitrile-butadiene-styrene (ABS), a poly(n-butyl acrylate) (PBA) rubber with a poly(methyl methacrylate) (PMMA) shell and two silicone-acrylate rubbers consisting of PBA with different amounts of polydimethylsiloxane (PDMS) and different shells (PMMA and styrene-acrylonitrile, SAN). The focus of this work was to study the impact of the acrylate and silicon-acrylate rubbers with respect to pyrolysis and flame retardancy in comparison to common ABS. Thermogravimetry (TG) was performed to investigate the pyrolysis behaviour and reaction kinetics. TG in combination with FTIR identified the pyrolysis gases. Solid residues were investigated by FTIR-ATR. PC/ABS shows two-step decomposition, with PC decomposing independently from ABS at higher temperatures. Pure acrylate rubber destabilises PC due to interactions between the rubber and PC, which leads to earlier decomposition of PC. Using silicone-acrylate rubbers led to similar results as PC/ABS with respect to pyrolysis, reaction kinetics and analysis of the solid residue; hence the exchange of ABS for the silicone-acrylate rubbers is possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号