首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
臭氧降解法制备壳低聚糖及其结构表征   总被引:3,自引:0,他引:3  
以85%脱乙酰度、相对分子质量为25×10^4的壳聚糖为原料,在20℃、pH为3、氧气流量0.7m^3/h的条件下降解6h,降解液用氨水调至pH为9,无沉淀,分别用截留相对分子质量为2k、3k、5k、10k的中空纤维膜超滤,获得所需聚合度的壳低聚糖。降解产物的结构用红外光谱、核磁共振碳谱表征,结果说明降解前后的结构基本没有变化。降解产物的聚合度用飞行时间质谱表征,其中经过2k中空纤维膜超滤后的壳低聚糖聚合度主要为4~10。  相似文献   

2.
Chitosan A1, A2 and A3 with molecular weight of 471, 207 and 100 kDa respectively, produced from squid pen chitin was degraded by gamma rays in the solid state and in aqueous solution with various doses in air at ambient temperature. Effect of molecular weight on radiation chemical degradation yield of chain scission and degradation rate constants of γ-irradiated chitosan in solid state and in aqueous solution was investigated. The radiation chemical degradation yield G(s) and degradation rate values were calculated. The molecular weight changes were monitored by capillary viscometry method and the chemical structure changes were followed by UV analysis. The results showed that, the degradation of chitosan was faster in solution, than in solid state. The values of G(s) in solid state and in aqueous solution were respectively 1.1×10?8 mol/J and 0.074×10?7 mol/J for A1, 4.42×10?8 mol/J and 0.28×10?7 mol/J for A2 and 6.08×10?8 mol/J and 0.38×10?7 mol/J for A3. Degradation rate constants values ranged from 0.41×10?5 to 2.1×10?5 kGy?1 in solid state, whereas in solution they ranged from 13×10?5 to 68×10?5 kGy?1. The chitosan A3 was more sensitive to radiolysis than A1 and A2. The chain scission yield, G(s) and degradation rate constants seems to be greatly influenced by the initial molecular weight of the chitosan. Structural changes in irradiated chitosan are revealed by the apparition of absorption peaks at 261 and 295 nm, which could be attributed to the formation of carbonyl groups. In both conditions the peak intensity was higher in chitosan A3 than in A1 and A2, the oxidative products decreased with increasing molecular weight of chitosan.  相似文献   

3.
 Original chitosan with Mv of 2.7 × 105 was degraded by irradiation with γ-rays and a series of low molecular weight O-carboxymethylated chitosans (O-CMCh) were prepared based on the irradiated chitosan. A kinetic model of the irradiation of chitosan was put forward. Results show that the irradiation degradation of chitosan obeys the rule of random degradation and the degree of deacetylation of irradiated chitosan is slightly raised. The antibacterial activity of O-CMCh is significantly influenced by its MW, and a suppositional antibacterial peak appears when Mv is equal to 2 × 105.  相似文献   

4.
壳聚糖超声可控降解及降解动力学研究   总被引:1,自引:0,他引:1  
通过正交实验法考察了壳聚糖溶液浓度、反应温度、超声强度以及醋酸溶液浓度对超声降解反应的影响,确定了最佳反应条件,制备了一系列不同分子量的壳聚糖.研究了壳聚糖溶液浓度、反应温度以及壳聚糖原料分子参数与降解速率常数的关系.通过红外光谱、X-射线衍射和凝胶渗透色谱对降解产物进行了表征.结果表明,超声降解壳聚糖的最佳条件为10℃,壳聚糖溶液浓度2.5g/L.降解速率常数随壳聚糖溶液浓度和反应温度的降低而增大.高分子量和低脱乙酰度的壳聚糖原料有较高的降解速率和降解速率常数,壳聚糖原料的分子量对降解速率和降解速率常数的影响大于脱乙酰度对其的影响.超声波导致了壳聚糖分子量的降低和产物晶体结构的破坏,但没有改变产物的脱乙酰度和糖残基结构.  相似文献   

5.
For the degradation of chitosan, a novel physical method of self-resonating cavitation with strong cavitation effects was investigated in this paper. The effects of initial concentration, pH, temperature, inlet pressure and cavitation time on the degradation efficiency of chitosan were evaluated. It was found that the degradation efficiency was positively correlated with temperature and cavitation time, but was negatively correlated with the solution concentration. The degradation efficiency was maximized at pH of 4.4 and inlet pressure of 0.4 MPa. Under the experimental conditions, the intrinsic viscosity of chitosan solution was reduced by 92.2%, which was twice as high as the degradation efficiency where a Venturi tube cavitator was used. The viscosity-average molecular weights of initial and degraded chitosan were 651 and 104 kD, respectively. The deacetylation degree of chitosan slightly decreased from 89.34% to 88.05%. Structures and polydispersity of initial and degraded chitosan were measured by Fourier-transform infrared spectroscopy (FT-IR), nuclear magnetic resonance hydrogen spectroscopy (1H NMR), X-ray diffraction (XRD) and gel permeation chromatography (GPC). The results showed that the degradation process did not change the natural structure of chitosan. XRD peaks of the original chitosan were observed at 2θ of 9.59° and 20.00°, and the one at 2θ of 20.00° was obviously weakened after the degradation process, which indicated that the crystallinity of chitosan decreased significantly after the degradation. The polydispersity index of chitosan samples decreased from 3.17 to 2.75, indicating that the molecular-weight distribution of products after the degradation was more concentrated. The results proved that self-resonating cavitation prompted the degradation of chitosan and could reduce the polydispersity of the products for the production of oligochitosan with homogeneous molecular weights.  相似文献   

6.
The degradative activities of neutral protease against chitosan samples with different molecular parameters were characterized. The effects of the degree of deacetylation (DD) and molecular weight (MW) of chitosan on its susceptibility to degradation were investigated. The DD and MW of the chitosans were determined using potentiometric titration and viscometry, respectively. The molecular weight distribution of initial and degraded commercial chitosan was investigated by gel permeation chromatography. Initial degradation rates (r) were determined from the plots of viscosity decrease against time of degradation. The time courses of degradation of chitosans with neutral protease were non-linear and the enzymatic hydrolysis was an endo-action. Classical Michaelis-Menten kinetic parameters were measured by analyzing the amount of reducing sugars and Eadie-Hofstee plots established that hydrolysis of chitosan by neutral protease obeyed Michaelis-Menten kinetics. Michaelis-Menten parameters and initial degradation rates were calculated and compared to determine the influences of DD and MW on hydrolysis. The results showed that higher DD and higher MW chitosans possessed a lower affinity for the enzyme and a slower degradation rate. Those samples with a lower DD and lower MW were more susceptible substrates.  相似文献   

7.
For the first time, N-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan chloride (HTCC) was prepared through a fast, easy and efficient method with the assistance of microwave irradiation, and the quaternized chitosan was also degraded via the microwave irradiation. A comparative study was performed by using the conventional heating method to prepare HTCC. The structure and property of the quaternized chitosan obtained by these two methods were characterized by GPC, XRD, FTIR, NMR, TG and elemental analysis. It was shown that quaternized chitosan was successfully prepared within 50 min via microwave irradiation method, while a much longer time of 6–7 h was needed with the conventional heating method. The substitutions both occurred on the C2 position of chitosan with the two different methods, and their HTCC products had weight average similar molecular weight (Mw), structure and thermal stability. The HTCC prepared by the microwave irradiation method had a little lower degree of substitution (DS) than those prepared via conventional heating with the same mole ratio (6:1) of the intermediate to chitosan. The degradation study showed that the Mw of HTCC decreased rapidly from 4.6 × 105 to 1.1 × 105 in 1 h under microwave irradiation, while it only decreased from 4.6 × 105 to 2.1 × 105in 1 h through conventional heating degradation. These results revealed that microwave irradiation is a more efficient and environment-friendly way to obtain the water-soluble chitosan derivatives and their degraded products.  相似文献   

8.
Low temperature degradation and characterization of natural rubber   总被引:1,自引:0,他引:1  
Low temperature degradation of natural rubber was performed with potassium persulfate (K2S2O8, KPS) in the latex stage at 30 °C to accomplish a good processability of the rubber. Various grades of natural rubbers were used as a source rubber. Gel content, molecular weight and chemical structure of the rubbers were characterized by swelling method, size exclusion chromatography and 1H NMR spectroscopy, respectively. The well characterized natural rubber was subjected to oxidative degradation with KPS at 30 °C. Mooney viscosity decreased when the latex was degraded with 1.0 phr of KPS and it was dependent upon the amount of KPS. Molecular weight and gel content of the degraded natural rubber were about one-half as low as those of the source rubber. Chemical structure of the rubber was analyzed through Fourier transform infrared and 1H NMR spectroscopic methods. The degraded natural rubber was found to contain carbonyl and formyl groups as an evidence of the oxidative degradation. Tensile strength of a vulcanizate prepared from the degraded natural rubber was the same as that prepared from the source rubber, even though the gel content and the molecular weight of the degraded rubber were distinguished from those of the source rubber.  相似文献   

9.
Chitosan samples were irradiated by 60Co γ-rays in the presence of hydrogen peroxide with radiation dose from 10 kGy to 100 kGy. The degradation was monitored by gel permeation chromatography (GPC), revealing the existence of a synergetic effect on the degradation. Structures of the degraded products were characterized with Fourier-transform infrared spectra (FT-IR), ultraviolet-visible spectral (UV-vis) analysis, and X-ray diffraction (XRD). Results showed that the crystallinity of chitosan decreases with degradation, and the crystalline state of water-soluble chitosan is entirely different from that of water-insoluble chitosan. An elemental analysis method was employed to investigate changes in the element content of chitosan after degradation. Mechanism of chitosan radiation degradation with and without hydrogen peroxide was also discussed.  相似文献   

10.
Synergistic degradation of chitosan by γ-irradiation of chitosan solution (3%) in the presence of hydrogen peroxide (0.25%, 0.5% and 1%) was investigated. The efficiency of the degradation process was demonstrated by gel permeation chromatography (GPC) analysis of the average molecular weight of degraded chitosan (oligochitosan). Structures of resultant oligochitosan were characterized by Fourier-transform infrared spectra (FT-IR) and X-ray diffraction (XRD). Results showed that oligochitosan with Mw from 5000 to 10,000 could be efficiently prepared by γ-irradiation of chitosan solution containing a small amount of hydrogen peroxide at low dose less than 10 kGy. There was almost no significant change in the main chain structure of oligochitosan; however, the obtained oligochitosans lost about 10% of amino groups and the formation of carboxyl groups could not be specified by FT-IR spectra. The morphology state of oligochitosan was essentially amorphous, which differs from that of original chitosan. The combined γ ray/H2O2 method is significantly efficient for scale-up manufacture of oligochitosan.  相似文献   

11.
In this study, polysaccharides from Laminaria japonica (LJP) were produced by the treatment of ultraviolet/hydrogen peroxide (UV/H2O2) degradation into different molecular weights. Then, the degraded LJP were used to prepare LJP/chitosan/PVA hydrogel wound dressings. As the molecular weight of LJP decreased from 315 kDa to 20 kDa, the swelling ratio of the LJP-based hydrogels rose from 14.38 ± 0.60 to 20.47 ± 0.42 folds of the original weight. However, the mechanical properties of LJP-based hydrogels slightly decreased. With the extension of the UV/H2O2 degradation time, the molecular weight of LJP gradually decreased, and the anti-inflammatory activities of LJP-based hydrogels gradually increased. LJP that were degraded for 60 min (60-gel) showed the best inhibition effects on proinflammatory cytokines, while the contents of TNF-α, IL-6, and IL-1β decreased by 57.33%, 44.80%, and 67.72%, respectively, compared with the Model group. The above results suggested that low Mw LJP-based hydrogels showed great potential for a wound dressing application.  相似文献   

12.
Abstract

The degradation of atrazine and parathion-methyl by UV-light in the presence of O2(UV/O2) and by a combination of UV-light and ozone in the presence of O2(UV/O2/O3) was studied at a pilot plant for drinking water treatment. The photolysis rate of parathion-methyl increased with UV/O2/O3 compared to the treatment with UV/O2 only, while the photodecomposition rate of atrazine was not enhanced by the UV/O2/O3 combination under the working conditions applied.

In field experiments with a large-scale plant the degradation of atrazine and desethylatrazine was studied at a drinking water supply. The applied ozone dose rates were smaller and the residence time of the liquid phase in the UV-reaction unit was shorter than in the pilot plant. The degradation rate of both atrazine and desethylatrazine increased with increasing ozone dose rates and increasing radiant power. At a continuous flow rate of 70 m3/h of contaminated raw water atrazine could be degraded below the threshold limit for pesticides (0.1[ugrave]g/L) at optimum operation conditions, whereas the resulting desethylatrazine concentration exceeded this limit. At a continuous flow rate of 30 m3/h desethylatrazine could be degraded below the threshold limit, too.  相似文献   

13.
Hydrolysis of chitosan in ionic liquids was carried out under microwave irradiation (MW) using sulfonic acid-functionalized ionic liquids (SFILs) as catalysts. The effect of microwave power, irradiation time, dosage of SFILs and DMSO was investigated by orthogonal tests. Under the optimal reaction conditions, the yield of total reducing sugars (TRS) reached over 90% within 2 min. The viscosity-average molecular weight of degraded chitosan was determined by viscosity method. The structures of the original and degraded chitosan were characterized by Fourier-transform infrared (FTIR) spectra, X-ray powder diffraction (XRD) analysis and carbon-13 nuclear magnetic resonance spectroscopy (13C NMR). The influence of microwave power and irradiation time on the TRS and Mv was further studied. This method can dramatically reduce reaction time.  相似文献   

14.
The degradation of 4-chlorophenol (4-CP) by using gamma rays generated by a 60Co source in the presence of O3 was investigated. The radiolysis of 4-CP and the kinetics of 4-CP mineralization were analyzed based on the determination of total organic carbon (TOC). The influence of initial 4-CP concentration and the free radicals scavengers (such as NaHCO3 and t-butanol) on the 4-CP degradation was also studied. The results showed that when the radiation rate was 336 Gy·min−1, 4-chlorophenol at concentration of 10 mg·L−1 could be completely degraded at the radiation dose of 2 kGy. The degradation of 4-chlorophenol could be described by a first-order reaction model, the rate constant of 4-CP degradation by combined ozonation and radiation was 0.1016 min−1, which was 2.4 times higher than the sum of radiation (0.0294 min−1) and ozonation (0.0137 min−1). It revealed that the combination of radiation and ozonation resulted in synergistic effect, which can remarkably increase the degradation efficiency of 4-CP.  相似文献   

15.
壳聚糖在水溶液中的辐射降解反应   总被引:1,自引:0,他引:1  
研究了壳聚糖在CH3COOH/NaCl缓冲溶液均相体系下的辐射降解反应,给出了H2O2、异丙醇、pH、样品初始分子量等因素对壳聚糖降解的影响,探讨了实验条件下溶液中不同自由基对壳聚糖降解的作用,并对辐照前后壳聚糖的结构进行了表征.结果表明,酸性条件下,壳聚糖的降解主要由.H和.OH自由基共同作用引起,加入H2O2或者通入N2O都能够略微提高.OH自由基浓度,对壳聚糖的降解有促进作用.加入异丙醇后,由于同时降低了.H和.OH自由基浓度,导致壳聚糖降解缓慢.当溶液的pH接近中性后,对壳聚糖的降解起主要作用的为.OH自由基,加入H2O2或者通入N2O都会增加.OH自由基的浓度,从而明显提高壳聚糖的降解速率.此外,研究发现低分子量的壳聚糖具有较快的降解速率.样品的UV、FTIR分析表明,辐照后除在壳聚糖分子链端生成羰基外,壳聚糖主链结构未见变化,脱乙酰度也没有显著改变,显示出辐射降解是一种有效的控制壳聚糖分子量方法.  相似文献   

16.
Different molecular weight chitosans were evaluated on the decay of coated Anquito squashes (Cucurbita moschata) as well as the maintenance of the fruit quality along five storage months. The original chitosan (Mw=391 kDa, 83% DD), was depolymerized by gamma radiation. Apart from chain scission, other chemical changes were not detected by FTIR or UV–vis analyses. The molecular weight characterization of chitosans was done by size exclusion chromatography with dual light scattering and concentration detection (SEC-MALLS-RI). The coating effectiveness was evaluated on the following parameters: fungal decay incidence, weight loss, firmness, total reducing sugar, soluble solid, flesh color, carotene content, pH and titratable acidity. No sign of fungal decay was observed in squashes coated with 122 and 56 kDa chitosans, which were also the most effective treatments in reducing the weight loss. The chitosan with Mw=122 kDa was also the best treatment considering firmness, internal aspect, sugar and carotene content. Then, radiation degraded chitosan was better in C. moschata preservation than the original chitosan.  相似文献   

17.
N-Succinyl chitosan (N-SC) products with various degrees of substitution were synthesized by a direct reaction between chitosan and succinic anhydride. The susceptibility of the as-synthesized polymers to degradation upon their exposure to γ-ray radiation was investigated. The results were compared with the as-received chitosan. The size exclusion chromatographic results showed that chitosan and N-SC products in their dilute aqueous solution state were more subservient to degradation by γ-ray radiation than in their solid film state, despite the much less exposure to the radiation (i.e., 5-30 kGy for the solutions versus 20-100 kGy for the films). Increasing the radiation dose resulted in the rather monotonous decrease in the molecular weights of the polymers. Structural analyses of the irradiated polymers by Fourier-transformed infrared spectroscopy (FT-IR) and UV-visible spectrophotometry indicated the increase in the amount of carbonyl groups with the radiation dose. The formation of the carbonyl groups suggested that the radiolysis of chitosan and N-SC products occurred at the glycosidic linkages. In addition, FT-IR, elemental analysis and proton nuclear magnetic resonance spectroscopy (1H NMR) results suggested that γ-ray radiation affected both the N-acetyl and N-substituted groups on the polymer chains.  相似文献   

18.
Zero-valent iron (Fe0) has recently been proposed as a potential candidate for the degradation of pharmaceuticals, because Fe0 can release dissolved iron species, activate molecular oxygen, and react with oxidant species. Additionally, due to its small particle size and large surface area, this catalyst can provide better degradation results, compared to traditional processes. This work focuses on the elimination of pharmaceuticals present in different water matrices, considering the potential harm that these substances can cause in the environment. The mechanisms of pharmaceutical removal using Fe0 particles include reduction, adsorption, precipitation, and oxidation processes. Most studies have focused on oxidation processes in the presence of Fe0 and radicals derived from oxidants such as hydrogen peroxide (H2O2), ozone (O3), peroxysulfate (SO52−), peroxodisulfate (S2O82−), and oxygen (O2). Most of the results have shown that high percentages of pharmaceuticals can be removed, degraded, and mineralized. The mechanisms of oxidation and the parameters that influence the degradation of pharmaceuticals, as well as the possible degradation pathways, are discussed here. This review provides information on trends of different processes that use Fe0, considering aspects such as particle size, type of matrix, the pharmaceuticals studied, and the results obtained that can improve understanding of new advances in the field of advanced oxidation processes (AOPs) for the degradation and elimination of pharmaceuticals.  相似文献   

19.
Effect of 100 keV proton radiation on the structure and tensile properties of PTFE film was investigated. The change in structure before and after proton radiation was mainly evaluated by means of differential scanning calorimetry. The experimental results show that under radiation of 100 keV protons for the fluence less than 7×1015 p/cm2, the DSC characteristics including the phase enthalpy of transformations at room temperature ΔHrt1 and ΔHrt2, the melting enthalpy ΔHm1 and ΔHm2, the crystallization exothermal enthalpy ΔHc, and Tg II were decreased, while the melting temperature was increased a little with the fluence increase. The change in crystallization enthalpy ΔHc indicated the increase of molecular weight of the PTFE film, but for 150 keV when the fluence exceeded the fluence of 1016/cm2, the molecular weight decreased gradually. With increasing proton fluence, the thermal gravity loss was decreased, while the initial decomposition temperature increased, demonstrating that crosslinking of molecular chains occurred. With the increase of the proton fluence, for proton with energy less than 150 keV, the tensile fracture strength increased at first, but when the fluence exceeded 1016/cm2, the tensile fracture strength showed a decreasing trend. While for the proton of 170 keV, the tensile fracture strength σf increased abruptly at the fluence of 2×1013/cm2, with the fluence increasing further, the tensile fracture strength σf decreased gradually. The change of tensile properties could be related with the competition of branching crosslinking and the scission degradation.  相似文献   

20.
The degradation behavior of porous scaffolds plays an important role in the synthesis of new tissue. In this study, three-dimensional hybrid porous scaffolds of chitosan (CS) comprised of nanostructured carbon (graphene oxide (GO) and single-walled carbon nanohorns (SWCNH)) were prepared by freeze-drying method. In-vitro degradation behavior of scaffolds was investigated up to 8 weeks in phosphate buffer saline (PBS) solution at 37 °C. The characteristics of scaffolds explored as a function of degradation time include crystalline structure, pore morphology, molecular weight, and wet/dry weight. The pH value of the PBS solution during degradation was also monitored. The study demonstrates for the first time that hybrid chitosan scaffolds with nanostructured carbon (GO and SWCNH) are potentially more stable than pure chitosan scaffolds during the time period required for tissue regeneration. The stability of hybrid scaffolds is attributed to nanostructured carbon that was processed with the objective that it is present in a robust manner via a highly cross-linked dense network structure. The chemical structure of chitosan was disrupted within a short period of two weeks, while disruption occurred in hybrid scaffolds after eight weeks. This was accompanied by a weight loss of ∼28% in pure chitosan and ∼20% in hybrid scaffolds. Furthermore, the degraded products were of low molecular weight in pure chitosan and high molecular weight in hybrid chitosan scaffolds. This led to significant decrease in the pH of solution to ∼6.2 in pure chitosan and to ∼7.2 in hybrid scaffolds. The observations clearly underscore that the introduction of GO and SWCNH via cross-link mechanism in CS is a potentially viable approach to tune the degradation rate of hybrid scaffolds in tissue engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号