首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wang X  Zhao X  Liu X  Li Y  Fu L  Hu J  Huang C 《Analytica chimica acta》2008,620(1-2):162-169
In this study, a new method was developed for analyzing malathion, cypermethrin and lambda-cyhalothrin from soil samples by using homogeneous liquid–liquid extraction (HLLE) and gas chromatography with electron capture detector (GC–ECD). Acetone was used as extraction solvent for the extraction of target pesticides from soil samples. When the extraction process was finished, the target analytes in the extraction solvent were rapidly transferred from the acetone extract to carbon tetrachloride, using HLLE. Under the optimum conditions, linearity was obtained in the range of 0.05–40 μg kg−1 for malathion, 0.04–10 μg kg−1 for lambda-cyhalothrin and 0.05–50 μg kg−1 for cypermethrin, respectively. Coefficients of correlation (r2) ranged from 0.9993 to 0.9998. The repeatability was carried out by spiking soil samples at concentration levels of 2.5 μg kg−1 for lambda-cyhalothrin, and 10 μg kg−1 for malathion and cypermethrin, respectively. The relative standard deviations (RSDs) varied between 2.3 and 9.6% (n = 3). The limits of detection (LODs), based on signal-to-noise ratio (S/N) of 3, varied between 0.01 and 0.04 μg kg−1. The relative recoveries of three pesticides from soil A1, A2 and A3 at spiking levels of 2.5, 5 and 10 μg kg−1 were in the range of 82.20–91.60%, 88.90–110.5% and 77.10–98.50%, respectively. In conclusion, the proposed method can be successfully applied for the determination of target pesticide residues in real soil samples.  相似文献   

2.
Hou S  Zhu J  Ding M  Lv G 《Talanta》2008,76(4):798-802
A liquid chromatography–tandem mass spectrometry (LC–MS/MS) method was developed for simultaneous determination of three representative phytohormones in plant samples: gibberellic acid (GA3), indole-3-acetic acid (IAA) and abscisic acid (ABA). A solid-phase extraction (SPE) pretreatment method was used to concentrate and purify the three phytohormones of different groups from plant samples. The separation was carried out on a C18 reversed-phase column, using methanol/water containing 0.2% formic acid (50:50, v/v) as the isocratic mobile phase at the flow-rate of 1.0 mL min−1, and the three phytohormones were eluted within 7 min. A linear ion trap mass spectrometer equipped with electrospray ionization source was operated in negative ion mode. Selective reaction monitoring (SRM) was employed for quantitative measurement. The SRM transitions monitored were as 345 → 239, 301 for GA3, 174 → 130 for IAA and 263 → 153, 219 for ABA. Good linearities were found within the ranges of 5–200 μg mL−1 for IAA and 0.005–10 μg mL−1 for ABA and GA3. Their detection limits based on a signal-to-noise ratio of three were 0.005 μg mL−1, 2.2 μg mL−1 and 0.003 μg mL−1 for GA3, IAA and ABA, respectively. Good recoveries from 95.5% to 102.4% for the three phytohormones were obtained. The results demonstrated that the SPE-LC–MS/MS method developed is highly effective for analyzing trace amounts of the three phytohormones in plant samples.  相似文献   

3.
A simple liquid–liquid–liquid microextraction device of new design was used to pre-concentrate phenols from water samples before liquid chromatographic (LC) analysis. Extraction was induced by the pH difference inside and outside an organic phase located at the interface. The pH of the donor phase outside the organic phase was adjusted to 1 with HCl whereas the acceptor phase was a basic solution at pH 13. On stirring neutral phenols were extracted into the organic solvent then back-extracted into 1 μL of basic acceptor solution suspended from the tip of a micro syringe. The acceptor phase was then withdrawn into the micro syringe and injected directly into the LC. The technique uses a low-cost disposable extraction ‘device’ and is very convenient to operate. Up to 230-fold enrichment of analytes could be achieved. This procedure could also serve as a sample clean-up step because neutral and basic compounds were not extracted into the acceptor phase. The RSD (n = 5) was better than 6.2% and the linear calibration range was from 1 to 1000 µg–L−1 with r 2 ≥ 0.992.Optimization of experimental conditions (rate of stirring, ionic strength of the sample solution, concentration of reagents, time of extraction, and organic solvent volume) were also examined. The method was applied to the determination of phenols in tap and well waters.Revised: 14 February and 29 March 2005  相似文献   

4.
A new approach for decreasing the detection limit for a copper(II) ion-selective electrode (ISE) is presented. The ISE is designed using salicylidine-functionalized polysiloxane in carbon paste. This work describes the attempts to develop the electrode and measurements of its characteristics. The new type of renewable three-dimensional chemically modified electrode could be used in a pH range of 2.3–5.4, and its detection limit is 2.7 × 10−8 mol L−1 (1.2 μg L−1). This sensor exhibits a good Nernstian slope of 29.4 ± 0.5 mV/decade in a wide linear concentration range of 2.3 × 10−7 to 1.0 × 10−3 mol L−1 of Cu(II). It has a short response time (8 s) and noticeably high selectivity over other Cu(II) selective electrodes. Finally, it was satisfactorily used as an indicator electrode in complexometric titration with EDTA and determination of copper(II) in miscellaneous samples such as urine and various water samples.  相似文献   

5.
A highly sensitive micelle-mediated extraction methodology for the preconcentration of trace levels of vanadium as a prior step to its determination by flame atomic absorption spectrometry (FAAS) has been developed. Vanadium was complexed with 1-(2-pyridylazo)-2-naphthol (PAN) and hydrogen peroxide in acidic medium (0.2 mol L−1 phosphoric acid) using Triton X-100 as surfactant and quantitatively extracted into a small volume of the surfactant-rich phase after centrifugation. The color reaction of vanadium ions with hydrogen peroxide and PAN in phosphoric acid medium is highly selective. The chemical variables affecting cloud point extraction (CPE) were evaluated and optimized. The R.S.D. for 5 replicate determinations at the 20 μg L−1 V level was 3.6%. The calibration graph using the preconcentration system for vanadium was linear with a correlation coefficient of 0.99 at levels near the detection limits up to at least 0.6 μg L−1. The method has good sensitivity and selectivity and was applied to the determination of trace amounts of vanadium in water samples with satisfactory result. The proposed method is a rare application of CPE-atomic spectrometry to vanadium assay, and is superior to most other similar methods, because its useful pH range is in the moderately acidic range achieved with phosphoric acid. At this pH, many potential interferents are not chelated with PAN, and iron(III) as the major interferent is bound in a stable phosphate complex.  相似文献   

6.
A new molecularly imprinted polymer (MIP) for trace analysis of diclofenac in environmental water samples was prepared by a non-covalent protocol in which diclofenac was used as a template molecule. Diclofenac is a member of the class of drugs termed non-steroidal anti-inflammatory drugs (NSAIDs) which belong to the most frequently detected pharmaceuticals in the water-cycle in Europe. The MIP was synthesized using 2-vinylpyridine (2-VP) and ethylene glycol dimethacrylate (EGDMA) as a functional monomer and cross-linker, respectively, and bulk thermal polymerization method. 1H NMR spectroscopy was used to study the interaction between diclofenac and 2-VP mixed in toluene-d8 in pre-polymerization complex. Two non-covalent bonds were formed i.e. ionic interaction and hydrogen bonding. The binding characteristics of the MIP and diclofenac were evaluated using equilibrium binding experiments. Scatchard plot analysis revealed that two classes of binding sites were formed with dissociation constants of 55.6 μmol L−1 and 1.43 mmol L−1, respectively. Various parameters affecting the extraction efficiency of the polymers have been evaluated to achieve the selective preconcentration of diclofenac from aqueous samples and to reduce non-specific interactions. This resulted in an MISPE-LC/DAD method allowing the direct extraction of the analyte from sample matrix with a selective wash using dichloromethane/acetonitrile (94:6, v/v) followed by elution with dichloromethane/methanol (85:15, v/v). The recovery of a 100 ng diclofenac standard spiked into 200 mL of blank surface water was 96%, with good precision (RSD = 3.3%, n = 3). The MISPE was demonstrated to be applicable to the analysis of diclofenac in raw influent and final effluent wastewater samples from sewage treatment plant and revealed diclofenac concentrations of 1.31 ± 0.055 μg L−1 (n = 3) and 1.60 ± 0.049 μg L−1 (n = 3), respectively. Yielded results were in good agreement with the corresponding LC/TIS/MS/MS data obtained by an independent laboratory which were 1.40 and 1.50 μg L−1 for influent and effluent samples.  相似文献   

7.
A new electroanalytical methodology was developed for the quantification of the phytohormone indole-3-acetic acid (IAA), using a graphite–polyurethane composite electrode (GPU) and the square wave voltammetry (SWV), in 0.1 mol L− 1 phosphoric acid solution (pH 1.6). Analytical curves were constructed under optimized conditions (f = 100 s− 1, a = 50 mV, Ei = 5 mV) and the reached detection and quantification limits were 26 μg L− 1 and 0.2 mg L− 1, respectively. The developed methodology is simple and accurate for the routine determination of IAA. In order to verify the application of the electroanalytical methodology in fortified soil samples without previous treatment, an IAA assay was performed without serious interferences of the soil constituents.  相似文献   

8.
Xiong C  He M  Hu B 《Talanta》2008,76(4):772-779
A new, simple, and selective method has been presented for the separation and preconcentration of inorganic arsenic (As(III)/As(V)) and selenium (Se(IV)/Se(VI)) species by a microcolumn on-line coupled with inductively coupled plasma-optical emission spectrometry (ICP-OES). Trace amounts of As(V) and Se(VI) species were separated and preconcentrated from total As and Se at desired pH values by a conical microcolumn packed with cetyltrimethylammonium bromide (CTAB)-modified alkyl silica sorbent in the absence of chelating reagent. The species adsorbed by CTAB-modified alkyl silica sorbent were quantitatively desorbed with 0.10 ml of 1.0 mol l−1 HNO3. Total inorganic arsenic and selenium were similarly extracted after oxidation of As(III) and Se(IV) to As(V) and Se(VI) with KMnO4 (50.0 μmol l−1). The assay of As(III) and Se(IV) were based on subtracting As(V) and Se(VI) from total As and total Se, respectively. All parameters affecting the separation/preconcentration of As(V) and Se(VI) including pH, sample flow rate and volume, eluent solution and volume have been studied. With a sample volume of 3.0 ml, the sample throughput was 24 h−1 and the enrichment factors for As(V) and Se(VI) were 26.7 and 27.6, respectively. The limits of detection (LODs) were 0.15 μg l−1 for As(V) and 0.10 μg l−1 for Se(VI). The relative standard deviations (RSDs) for nine replicate determinations at 5.0 μg l−1 level of As(V) and Se(VI) were 4.0% and 3.6%, respectively. The calibration graphs of the method for As(V) and Se(VI) were linear in the range of 0.5–1000.0 μg l−1 with a correlation coefficient of 0.9936 and 0.9992, respectively. The developed method was successfully applied to the speciation analysis of inorganic arsenic and selenium in natural water samples with satisfactory results.  相似文献   

9.
Experiments indicated that protein can enhance the fluorescence of the 4-chlorosulfo-(2′-hydroxylophenylazo)-rhodanine-Ti(IV) complex [ClSARP-Ti(IV)] in the presence of bis(2-ethylhexyl)sulfosuccinate sodium salt (AOT) microemulsion. Based on this, a sensitive and reproducible fluorometric method for the determination of micro amount protein was developed. The calibration curves of four proteins were given. Under the optimum experimental conditions, the enhanced fluorescence intensity of the system was in proportional to the concentration of protein in the range of 0.1–11 μg mL−1 for bovine serum albumin (BSA), 1.0–10 μg mL−1 for human serum albumin (HSA), 1.0–50 μg mL−1 for ovalbumin (Ova) and 2.5–18 μg mL−1 for γ-globulins (γ-G). Their detection limits were 0.070, 0.071, 0.33 and 0.22 μg mL−1, respectively. The ClSARP-Ti(IV) complex as a spectral probe can be used to the determination of protein in milk powder and oatmeal yielding with satisfactory results. Therefore, the proposed method is one of the most sensitive methods available. In addition, the interaction mechanism of this system is studied by multi-techniques.  相似文献   

10.
In this work, the suitability of the microporous membrane liquid–liquid extraction (MMLLE) technique for the concentration of several organophosphate esters (OPs) in water samples is assessed. Analytes were first extracted into a few microlitres of an organic solvent, immobilized in the pores of a hollow polypropylene membrane, and then determined by gas chromatography with nitrogen–phosphorus detection (GC–NPD). Main parameters controlling the efficiency of the extraction step were identified and their effects on the performance of the technique discussed. Under final working conditions, 2 cm long polypropylene membranes, containing about 7 μL of octanol in the pores, were dipped in a glass vial filled with 115 mL of water with a 30% of sodium chloride. Extractions were carried out for 12 h, at room temperature, under magnetic stirring. After that, analytes were recovered from the membrane with 0.2 mL of ethyl acetate. This extract was mixed with the internal standard (50 μL of a tripentyl phosphate solution in the same solvent) and finally reduced to ca. 50 μL. Overall enrichment factors for the optimized method ranged from 35 to 1400 times, and the achieved limits of quantification from 0.008 to 0.12 ng mL−1, depending on the considered compound. Globally, the method showed an acceptable linearity and precision for all species, except for tris(2-ethylhexyl) phosphate (TEHP). Performance of the MMLLE approach is compared with that reported for other solid- and liquid-phase microextraction techniques and its suitability for the analysis of real water samples discussed.  相似文献   

11.
3-3′-Dimethoxybenzidine (o-dianisidine, ODA) is oxidised by Br2, among other oxidants, generating a compound that absorbs at 450 nm, while the non-oxidised reagent absorbs in the UV region. This reaction has been used previously as the basis of a continuous-flow method for the determination of bromate in ozonised water, with a detection limit lower than the maximum permitted for drinking water (10 μg L−1). The only interference observed in the method was that due to the chlorite ion (ClO2), which generated the same ODA bromation product. Thus, in systems in which O3 is employed as a disinfectant and disinfection is later enhanced with ClO and ClO2, there exists the possibility of finding BrO3 and ClO2, oxoanions generated as subproducts. The kinetic behaviour of the reaction between bromate and chlorite with bromine in acidic medium is different, allowing the proposal of a continuous-flow method for the simultaneous or sequential determination of both subproducts in water purification systems. None of the other subproducts interfered in the reaction. Kinetic differentiation was achieved by combining the temperature of the reaction and the length of the coils, after which it was possible to determine both analytes sequentially within a concentration range of 6–160 μg L−1.  相似文献   

12.
Solid phase microextraction (SPME) of chlorophenols [2-chlorophenol (2CP), 2,4-dichlorophenol (24CP), 4-chloro-3-methylphenol (43CP), 2,4,6-tri-chlorophenol (246CP) and pentachlorophenol (PCP)] followed by direct mass spectrometric analysis has been performed by fiber introduction mass spectrometry (FIMS). Two SPME fibers (65 μm PDMS/DVB and 85 μm PA fibers) were tested, and FIMS was performed via selective ion monitoring (SIM). The extractions were evaluated at 10% ionic strength and pH 1. Best extraction times were determined for both fibers. Limits of detection (LOD) and limits of quantification (LOQ) for both fibers were in the low μg L−1 range. Coefficients of correlation for the analytical curves showed linear responses and mineral water and river water samples spiked with 50 μg L−1 presented high recoveries. FIMS, as compared to current EPA methods, is demonstrated to allow faster and simpler (elimination of pre-separation or derivatization steps) analysis of chlorophenols in water with the required sensitivity.  相似文献   

13.
A new tetradentate N2O2 donor Schiff base ligand [OHC6H4CHNCH2CH2CH(CH2CH3)NCHC6H4OH = H2L ] was obtained by 1:2 condensation of 1,3-diaminopentane with salicylaldehyde and has been used to synthesise an unusual copper(II) complex whose asymmetric unit presents two structurally different almost linear trinuclear units [Cu3(μ-L)2(ClO4)2] [Cu3(μ-L)2(H2O)(ClO4)2] (1). The ligand and the complex were characterised by elemental analysis, FT-IR, 1H NMR and UV–Vis spectroscopy in addition electrochemical and single crystal X-ray diffraction studies were performed for the complex. The magnetic properties of 1 reveal the presence of strong intra-trimer (J1 = −202(3) cm−1 and J2 = −233(3) cm−1) as well as very weak inter-trimer (zJ′ = −0.11(1) cm−1) antiferromagnetic interactions.  相似文献   

14.
A method based on liquid-liquid extraction (LLE) and automated large volume injection (LVI)-GC-MS analysis was developed for the trace determination of phthalate di-esters in water samples at sub-g L–1 (ppb) levels. Strategies applied to reduce contamination include (i) careful selection of tools, glassware and solvents, (ii) systematic blank checks of the chromatographic system, glassware and solvents and (iii) frequent verifications of blanks during sequences. Background levels could be reduced to those present in the extraction solvent. For phthalates not present in the extraction solvent the limits of quantitation (LOQ) are 6 ng L–1 for di-methyl phthalate (DMP), 3 ng L–1 for benzylbutyl phthalate (BzBP) and 45 ng L–1 for the isomeric phthalate mixtures di-isononyl phthalate (DiNP) and di-isodecyl phthalate (DiDP). For the other phthalates, the LOQ was set at twice the blank (extraction solvent) level and are 20 ng L–1 for di-ethyl phthalate (DEP), 60 ng L–1 for di-isobutyl phthalate (DiBP), 80 ng L–1 for di-n-butyl phthalate (DBP) and 30 ng L–1 for bis-(2-ethylhexyl) phthalate (DEHP).Dedicated to Professor K. Jinno on the occasion of his 60th birthday  相似文献   

15.
The aim of this study was to develop an optical biosensor inhibition immunoassay, based on the surface plasmon resonance (SPR) principle, for use as a screening test for 13 (fluoro)quinolones, including flumequine, used as veterinary drugs in food-producing animals. For this, we immobilised various quinolone derivatives on the sensor chip and tested binding of a range of different antibodies (polyclonal and one engineered antibody) in the presence and absence of free (fluoro)quinolones. The main challenge was to detect flumequine in an assay giving good results for the other compounds. One antigen–antibody combination proved satisfactory: polyclonal antibodies raised against a dual immunogen and, on the sensor chip, a fluoroquinolone derivative. It was the first time that this concept of the bi-active antibody was described in the literature.The assay, optimised for detection in three matrices (poultry muscle, fish, and egg), was tested on incurred samples prepared by liquid extraction followed by two washing steps. This rapid, simple method proved adequate for detecting at least 13 (fluoro)quinolones at concentrations below established maximum residue levels (MRLs). The reference molecule norfloxacin could be detected in the range of 0.1–10 μg kg−1 in extracts of egg and poultry meat and in the range of 0.1–100 μg kg−1 in extracts of fish. The determined midpoints of these calibration curves were about 1, 1.5 and 3 μg kg−1 in poultry meat, egg and fish, respectively.  相似文献   

16.
A molecularly imprinted polymer has been synthesized for a selective on-line catechol extraction, followed by its spectrophotometric determination in guarana powder, mate tea and tap water samples. A clean-up column, containing a methacrylic polymer + C18 solid phase, was also used in order to enhance selectivity. The imprinted polymer was prepared by bulk polymerization using catechol as template and 4-vinylpyridine as the functional monomer. Permanganate solution was used as spectrophotometric reagent, where Mn(VII) was reduced to Mn(II) by catechol in an acid medium, causing color loss, which was monitored at 528 nm. Physical (extraction flow rate, elution flow rate, coil length) and chemical (nature and concentration of the eluent, potassium permanganate concentration) variables were optimized, and the selectivity was appraised using three molecules (4-chloro-2-methylphenol, 2-cresol, 2-methoxyphenol) similar to catechol. These molecules did not present interference in 1:8, 1:10 and 1:10 (catechol/concomitant) proportions, respectively. The analytical calibration curve ranged from 3.0 up to 100 μmol L− 1 (r > 0.999; seven concentrations levels, n = 3) and the limits of detection (LOD) and quantification (LOQ) were 0.8 and 2.7 μmol L− 1, respectively. Precision, expressed as RSD, was of 3.0% (20 μmol L− 1, n = 10), and the analytical frequency was 15 h− 1. Accuracy was checked by the HPLC technique and the results did not present significant difference at 95% confidence levels according to the t test.  相似文献   

17.
Yu F  Ding Y  Gao Y  Zheng S  Chen F 《Analytica chimica acta》2008,625(2):195-200
A new spectrofluorimetric method was developed for the determination of trace amounts of DNA using the calcein as a fluorescent probe. In the presence of appropriate amounts of the cationic surfactant cetyl trimethyl ammonium bromide (CTAB), the anionic dye calcein dimerizes. The weak fluorescence intensity of the dimer was enhanced by adding DNA at pH 6–7. The interaction between calcein–CTAB and DNA was studied on the basis of this behavior and a new method was developed for determining DNA. Under the optimal conditions, the enhanced fluorescence intensity was in proportion to the concentration of DNA in the range of 4.0 × 10−6 to 8.0 × 10−5 g L−1 for fsDNA and thermally denatured ctDNA (4.5 × 10−6 to 9.0 × 10−5 g L−1). The detection limits (S/N = 3) were 2.0 × 10−6 and 2.2 × 10−6 g L−1, respectively. This method was used for determining the concentration of DNA in synthetic samples with satisfactory results.  相似文献   

18.
In this article, a new method using single-drop microextraction (SDME) and gas chromatography micro-electron capture detection (GC-μECD) for the determination of chloroacetanilide herbicides (alachlor, acetochlor, metolachlor, pretilachlor and butachlor) residues was developed. The effects of SDME parameters such as extraction solvent, stirring rate, ionic strength, microdrop volume and extraction time were optimized. The optimum experimental conditions found were: 1.6 μl toluene microdrop, 5 ml water sample, 400 rpm stirring rate, 15 min extraction time and no salt addition. Analytical parameters such as linearity, repeatability and limit of detection were also evaluated. The proposed method was proved to be a simple and rapid analytical procedure for chloroacetanilide herbicides in water with limits of detection 0.0002–0.114 μg/l. The relative recoveries range from 80% to 102% for all the target analytes, with the relative standard deviations varying from 3.9% to 11.7%.  相似文献   

19.
Galera MM  García MD  Valverde RS 《Talanta》2008,76(4):815-823
This study reports the first analytical application of luminol chemiluminescence reaction for the sensitive detection of two benzoylurea insecticides (diflubenzuron and triflumuron). Off-line experiments demonstrated that previously irradiated traces of these benzoylurea insecticides largely enhanced the chemiluminescence emission yielded from the oxidation of luminol in methanol:water mixtures, by potassium permanganate in alkaline medium, the enhancement being proportional to the concentration of both pesticides. The two benzoylureas were determined in tomato samples by coupling liquid chromatography with post-column photoderivatization and detection based on this chemiluminescence reaction. Tomato samples were extracted using the QuEChERS method based on extraction with acetonitrile and dispersive solid-phase clean-up using primary and secondary amine (PSA). Interferences due to matrix effect were overcome by using matrix-matched standards. The optimised method was validated with respect to linearity, limits of detection and quantification, precision and accuracy. Under the optimised conditions, calibrations graphs were linear between 0.05 and 0.50 μg mL−1 for diflubenzuron and between 0.10 and 1.00 μg mL−1 for triflumuron. Method detection limits were 0.0025 and 0.0131 μg mL−1 (equivalent to 0.0005 and 0.0026 mg kg−1) and quantification limits were 0.05 and 0.10 μg mL−1 (equivalent to 0.01 and 0.02 mg kg−1) for diflubenzuron and triflumuron, respectively. In both cases, quantification limits were lower than the maximum residue levels (MRLs) established by the European legislation. The relative standard deviation of intra-day precision was below 10% and recoveries were between 79.7% and 94.2% for both pesticides.  相似文献   

20.
A spectrophotometric method for the determination of triclosan in personal care products was proposed. It was based on the reaction of sodium nitrite with p-sulfanilic acid in an acidic medium to form diazonium ion, with which triclosan further formed an azo compound in an alkaline medium. The resulting yellow colored product has a maximum absorption at 452 nm. A good linear relationship (r = 0.9999) was obtained in the range of 0–30 mg L−1 triclosan. A detection limit of 0.079 g L−1 was achieved and the relative standard deviation was 0.24% (n = 11) at 14 mg L−1 triclosan. The proposed method has been applied to the analyses of triclosan in several personal care products and the results were in good agreement with those obtained by high-performance liquid chromatography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号