首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mathematicians and mathematics educators agree that proof is an important tool in mathematics, yet too often undergraduate students see proof as a superficial part of the discipline. While proof is often used by mathematicians to justify that a theorem is true, many times proof is used for another purpose entirely such as to explain why a particular statement is true or to show mathematics students a particular proof technique. This paper reports on a study that used a form of inquiry-based learning (IBL) in an introduction to proof course and measured the beliefs of students in this course about the different functions of proof in mathematics as compared to students in a non-IBL course. It was found that undergraduate students in an introduction to proof course had a more robust understanding of the functions of proof than previous studies would suggest. Additionally, students in the course taught using inquiry pedagogy were more likely to appreciate the communication, intellectual challenge, and providing autonomy functions of proof. It is hypothesized that these results are a response to the pedagogy of the course and the types of student activity that were emphasized.  相似文献   

2.
Aiso Heinze 《ZDM》2004,36(5):150-161
In this article we report on an interview study involving ten grade 8 students. These interviews served as a qualitative supplement for a large-scale quantitative study on proof and argumentation (N=659). During videotaped interviews the students were asked to solve geometrical proof problems. The results indicate that students’ difficulties with proof and logical argumentation may be explained by insufficient knowledge of facts, deficits in their methodological knoledge about mathematical proofs, and a lack of knowledge with respect to developing and implementing a proof strategy. Low-achieving students show difficulties with respect to all these three aspects, whereas high-achieving students’ difficulties are mainly based on deficits of developing an adequate and correct proof strategy.  相似文献   

3.
In this paper, we propose an enriched and extended application of Harel and Sowder’s proof schemes taxonomy that can be used as a diagnostic tool for characterizing secondary students’ emergent learning of proof and proving. We illustrate this application in the analysis of data collected from 85 Year 9 (age 14–15) secondary students. We capture these students’ first encounters with proof and proving in an educational context (mixed ability, state schools in Greece) where mathematical proof is explicitly present in algebra and geometry lessons and where proving skills are typically expected, and rewarded, in key national examinations. We analyze student written responses to six questions, soon after the students had been introduced to proof and we identify evidence of six of the seven proof schemes proposed by Harel and Sowder as well as a further eight combinations of the six. We observed these combinations often within the response of the same student and to the same item. Here, we illustrate the eight combinations and we claim that a dynamic use of the proof schemes taxonomy that encompasses sole and combined proof schemes is a potent theoretical and pedagogical tool for mapping students’ multi-faceted and evolving competence in, and appreciation for, proof and proving.  相似文献   

4.
Combinatorics is an area of mathematics with accessible, rich problems and applications in a variety of fields. Combinatorial proof is an important topic within combinatorics that has received relatively little attention within the mathematics education community, and there is much to investigate about how students reason about and engage with combinatorial proof. In this paper, we use Harel and Sowder’s (1998) proof schemes to investigate ways that students may characterize combinatorial proofs as different from other types of proof. We gave five upper-division mathematics students combinatorial-proof tasks and asked them to reflect on their activity and combinatorial proof more generally. We found that the students used several of Harel and Sowder’s proof schemes to characterize combinatorial proof, and we discuss whether and how other proof schemes may emerge for students engaging in combinatorial proof. We conclude by discussing implications and avenues for future research.  相似文献   

5.
The National Council of Teachers of Mathematics calls for an increased emphasis on proof and reasoning in school mathematics curricula. Given such an emphasis, mathematics teachers must be prepared to structure curricular experiences so that students develop an appreciation for both the value of proof and for those strategies that will assist them in developing proving skills. Such an outcome is more likely when the teacher feels secure in his/her own understanding of the concept of “mathematical proof” and understands the ways in which students progress as they take on increasingly more complex mathematical justifications. In this article, a model of mathematical proof, based on Balacheff's Taxonomy of Mathematical Proof, outlining the levels through which students might progress as they develop proving skills is discussed. Specifically, examples of the various ways in which students operating at different levels of skill sophistication could approach three different mathematical proof tasks are presented. By considering proofs under this model, teachers are apt to gain a better understanding of each student's entry skill level and so effectively guide him/her toward successively more sophisticated skill development.  相似文献   

6.
7.
de Villiers (1990) suggested five roles of proof important in the professional mathematics community that may also serve to meaningfully engage students in learning proof: verification, explanation, systematization, discovery, and communication. We investigate written reflections on an end-of-semester assignment from undergraduates in an inquiry-based transition to proof course, where students reflected on instances during the semester when they engaged in the five roles of proof. We present the types of activities students recalled as influential to their engagement in the roles of proof (presenting, discussing, conjecturing, working on problem sets, and critiquing) and describe how students perceived these activities as influential to their engagement in the roles of proof. We provide student quotations highlighting these activities and offer implications for both research and practice.  相似文献   

8.
Proving and refuting mathematical claims constitute a significant element in the development of deductive thinking. These issues are mainly studied during geometry lessons and very little (if at all) in lessons of other mathematical disciplines. This study deals with high school students’ perceptions of proofs in the geometry. The study explores whether students know when to use a deductive proof and when an example is sufficient for proving or refuting geometrical claims. The findings indicate that in cases of simple claims, the students corroborate them by using a deductive proof. However, when the claim is more complex, the students tend to present both a proof and an example. Moreover, they are unsure whether using an example can constitute a method for proving a mathematical claim, believing that in mathematics everything must be proven. They believe that examples are used merely for illustration purposes rather than as a means of convincing. The research conclusions support the need for deepening and developing the students’ distinction between cases where examples are insufficient and cases where an example is sufficient for proving a claim.  相似文献   

9.
This paper reports the results of an exploratory study of the perceptions of and approaches to mathematical proof of undergraduates enrolled in lecture-based and problem-based “transition to proof” courses. While the students in the lecture-based course demonstrated conceptions of proof that reflect those reported in the research literature as insufficient and typical of undergraduates, the students in the problem-based course were found to hold conceptions of and approach the construction of proofs in ways that demonstrated efforts to make sense of mathematical ideas. This sense-making manifested itself in the ways in which students employed initial strategies, notation, prior knowledge and experiences, and concrete examples in the proof construction process. These differences were also seen when students were asked to determine the validity of completed proofs. These results suggest that such a problem-based course may provide opportunities for students to develop conceptions of proof that are more meaningful and robust than does a traditional lecture-based course.  相似文献   

10.
This article describes an activity for secondary school students that may constitute an appropriate opportunity to discuss with them the idea of proof, particularly in an algebraic context. During the activity the students may experience and understand some of the roles played by proof in mathematics in addition to verification of truth: explanation, discovery, intellectual challenge and self-fulfilment. They may learn that proof is not always a necessary condition for conviction since the work with several examples may provide confidence in the truth of a conjecture. The activity promotes the investigation of several families of quadratic functions and several families of cubic functions. The most important results are discussed and proven in the paper.  相似文献   

11.
History and research on proof by contradiction suggests proof by contradiction is difficult for students in a number of ways. Students’ comprehension of already-written proofs by contradiction is one such aspect that has received relatively little attention. Applying the cognitive lens of Action-Process-Object-Schema (APOS) Theory to proof by contradiction, we constructed and tested a cognitive model that describes how a student might construct the concept ‘proof by contradiction’ in an introduction to proof course. Data for this study was collected from students in a series of five teaching interventions focused on proof by contradiction. This paper will report on two participants as case studies to illustrate that our cognitive trajectory for proof by contradiction is a useful model for describing how students may come to understand the proof method.  相似文献   

12.
We inspect the hypothesis that geometry students may be oriented toward how they expect that the teacher will evaluate them as students or otherwise oriented to how they expect that their work will give them opportunities to do mathematics. The results reported here are based on a mixed-methods analysis of twenty-two interviews with high school geometry students. In these interviews students respond to three different tasks that presented students with an opportunity to do a proof. Students’ responses are coded according to a scheme based on the hypothesis above. Interviews are also coded using a quantitative linguistic ratio that gauges how prominent the teacher was in the students’ opinions about the viability of these proof tasks. These scores were used in a cluster analysis that yielded three student profiles that we characterize using composite profiles. These profiles highlight the different ways that students can experience proof in the geometry classroom.  相似文献   

13.
We propose a class assignment where students are asked to construct and implement an efficient algorithm to calculate the last digits of a positive integral power of a positive integer. The mathematical prerequisites for this assignment are very limited: knowledge of remainder calculus and the binary representation of a positive integer. The periodicity of the last digits is studied by means of the Euler totient function and the Carmichael function.  相似文献   

14.
    
Generalization and proof are defining activities within mathematics, yet the focus of "school" proof has often been on form over meaning, on established results rather than exploration and discovery. Computer-based microworlds offer opportunities for students to notice and describe patterns, formulate generalizations, and generate and test mathematics conjectures. This paper examines the work of a group of middle and high school students who used a microworld for transformation geometry to investigate the composition of reflections. The students‘conjectures are described in terms of a learning paths chart for the task, as well as through a detailed analysis of the work of one pair of students. A general scheme for describing informal exploration and reasoning prior to formal proof is offered, and the role of social support in the learning of proof is discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
16.
This case study investigated how secondary preservice mathematics teachers perceive the need for and the benefits of formal proof when given geometric tasks in the context of dynamic geometry software. Results indicate that preservice teachers are concerned that after using dynamic software high school students will not see the need for proofs. The participants stated that multiple examples are not equivalent to a proof but, nonetheless, questioned the value of formal proof for high school students. Finally, preservice teachers found the greatest value of geometric software to be in helping students understand key relationships within a problem or theorem. Participants also tended to study a problem more deeply with the software than without it.  相似文献   

17.
This article describes a study of backgrounds, beliefs, and attitudes of teachers about proofs. Thirty preservice elementary teachers enrolled in a mathematics content course and 21 secondary mathematics teachers in an abstract algebra course were surveyed. The study explored four issues: preservice teachers' experiences/exposure to proof, their beliefs about what constitutes a proof and the role of proof in mathematics, and their beliefs about when proof should be introduced in grades K-12. Results of the survey are described as a means for discussing the backgrounds and beliefs future teachers hold with regard to teaching proofs in their own classrooms. Finally, a short collection of sample explorations and questions, which could be used to encourage the thinking and writing of proofs in grades K-12, is provided. One of these questions was posed to 215 secondary students; examples of their reasoning and a discussion of the various techniques employed by the students are included.  相似文献   

18.
Proving is an essential activity in mathematics but there are serious difficulties encountered by mathematics undergraduates in engaging with proof in the intended way. This article presents an initial analysis of (i) a quantitative study of a large sample of UK mathematics undergraduates which describes their declared perceptions about proof, and (ii) a qualitative study of a subsample of these students which analyses their actual proof perceptions as well as their actual proof practices. A comparison is also made between their publicly declared perceptions of proof and their personal proclivities in proving.  相似文献   

19.
We analyze heuristic worked-out examples as a tool for learning argumentation and proof. Their use in the mathematics classroom was motivated by findings on traditional worked-out examples, which turned out to be efficient for learning algorithmic problem solving. The basic idea of heuristic worked-out examples is that they encourage explorative processes and thus reflect explicitly different phases while performing a proof. We tested the hypotheses that teaching with heuristic examples is more effective than usual classroom instruction in an experimental classroom study with 243 grade 8 students. The results suggest that heuristic worked-out examples were more effective than the usual mathematics instruction. In particular, students with an insufficient understanding of proof were able to benefit from this learning environment.  相似文献   

20.
We present a model for describing the growth of students’ understandings when reading a proof. The model is composed of two main paths. One is focused on becoming aware of the deductive structure of the proof, in other words, understanding the proof at a semantic level. Generalization, abstraction, and formalization are the most important transitions in this path. The other path focuses on the surface-level form of the proof, and the use of symbolic representations. At the end of this path, students understand how and why symbolic computations formally establish a claim, at a syntactic level. We make distinctions between states in the model and illustrate them with examples from early secondary students’ mathematical activity. We then apply the model to one student’s developing understanding in order to show how the model works in practice. We close with some suggestions for further research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号