首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Electrophiles such as Me(+), Ag(+), or protons react with the five-coordinate Ir(III) complex [IrClH(biPSi)] (biPSi = κ-P,P,Si-Si(Me){(CH(2))(3)PPh(2)}(2)) by abstracting its chloride ligand. The resulting species can be stabilized by a variety of L ligands to give the cationic complexes [IrH(biPSi)L(2)](+). The derivative [IrH(biPSi)(NCMe)(2)](+) has been subjected to a kinetic study regarding the facile dissociations of its acetonitrile ligands. The presence of water changes the course of the reaction producing dihydride complexes that contain the silanol ligand κ-O,P,P-HOSi(Me){(CH(2))(3)PPh(2)}(2) (biPSiOH). The water activation product [IrH(2)(biPSiOH)(NCMe)](CF(3)SO(3)) undergoes insertion reactions with ethylene and phenylacetylene. The use of hydrolyzable fluorinated counterions such as PF(6)(-) or BF(4)(-) further modifies the reaction by provoking the incorporation of fluoride at the silicon atom of the former biPSi ligand. The dihydride resulting after such a process, [IrH(2)(biPSiF)(NCMe)(2)]BF(4) (biPSiF = κ-P(2)-FSi(Me){(CH(2))(3)PPh(2)}(2)), displays a trans-chelating diphosphine ligand. When dehydrogenating the Ir center, spontaneously or using ethylene as hydrogen acceptor, the diphosphine backbone undergoes a Si-C bond cleavage leading to a new Ir(III) species with κ-P,Si and κ-C,P chelate ligands.  相似文献   

2.
As part of our interest in the design and reactivity of P,O ligands, and because the insertion chemistry of small molecules into a metal alkyl bond is very dependent on the ancillary ligands, the behavior of Pt-methyl complexes containing the beta-phosphonato-phosphine ligand rac-Ph2PCH(Ph)P(O)(OEt)2 (abbreviated PPO in the following) toward CO insertion has been explored. New, mononuclear Pt(II) complexes containing one or two PPO ligands, [PtClMe(kappa2-PPO)] (1), [Pt{C(O)Me}Cl(kappa2-PPO)] (2), [PtMe(CO)(kappa2-PPO)]OTf (3 x OTf), [PtMe(OTf)(kappa2-PPO)] (4), trans-[PtClMe(kappa1-PPO)2] (5), [PtMe(kappa2-PPO)(kappa1-PPO)]BF4 (6 x BF4), [PtMe(kappa2-PPO)(kappa1-PPO)]OTf (6 x OTf), and [Pt{C(O)Me}(kappa2-PPO)(kappa1-PPO)]BF4 (7 x BF4) have been prepared and characterized. Hemilability of the ligands is observed in the cations 6 and 7 in which the terminally bound and chelating PPO ligands exchange their role on the NMR time-scale. The acetyl complexes 2 and 7 are stable in solution, but the former deinserts CO upon chloride abstraction. We also demonstrate the ability of PPO to behave as an assembling ligand and to stabilize a heterometallic Pt-Ag metal complex, [PtMe(kappa2-PPO){mu-(eta1-P;eta1-O)PPO)}Ag(OTf)(Pt-Ag)]OTf (8 x OTf), which was obtained by reaction of 5 with AgOTf to generate more reactive, cationic complexes. Whereas the first equivalent of AgOTf abstracted the chloride ligand, the second equivalent added to the cationic complex with formation of a Pt-Ag bond (2.819(1) A). The complexes 1, 2, 4, 5 x CH2Cl2, and (8 x OTf)2 have been structurally characterized by single-crystal X-ray diffraction. The latter has a dimeric nature in the solid state, with two silver-bound triflates acting as bridging ligands between two Pt-Ag moieties. In addition to the Ag-Pt bond, the Ag+ cation is stabilized by a dative O -->Ag interaction involving one of the PPO ligands.  相似文献   

3.
In the presence of ligands such as acetonitrile, ethylene, or propylene, the Ir(I) complex [Ir(1,2,5,6-eta-C8H12)(NCMe)(PMe3)]BF4 (1) transforms into the Ir(III) derivatives [Ir(1-kappa-4,5,6-eta-C8H12)(NCMe)(L)(PMe3)]BF4 (L = NCMe, 2; eta2-C2H4, 3; eta2-C3H6, 4), respectively, through a sequence of C-H oxidative addition and insertion elementary steps. The rate of this transformation depends on the nature of L and, in the case of NCMe, the pseudo-first-order rate constants display a dependence upon ligand concentration suggesting the formation of five-coordinate reaction intermediates. A similar reaction between 1 and vinyl acetate affords the Ir(III) complex [Ir(1-kappa-4,5,6-eta-C8H12){kappa-O-eta2-OC(Me)OC2H3}(PMe3)]BF4 (7) via the isolable five-coordinate Ir(I) compound [Ir(1,2,5,6-eta-C8H12){kappa-O-eta2-OC(Me)OC2H3}(PMe3)]BF4 (6). DFT (B3LYP) calculations in model complexes show that reactions initiated by acetonitrile or ethylene five-coordinate adducts involve C-H oxidative addition transition states of lower energy than that found in the absence of these ligands. Key species in these ligand-assisted transformations are the distorted (nonsquare-planar) intermediates preceding the intramolecular C-H oxidative addition step, which are generated after release of one cyclooctadiene double bond from the five-coordinate species. The feasibility of this mechanism is also investigated for complexes [IrCl(L)(PiPr3)2] (L = eta2-C2H4, 27; eta2-C3H6, 28). In the presence of NCMe, these complexes afford the C-H activation products [IrClH(CH=CHR)(NCMe)(PiPr3)2] (R = H, 29; Me, 30) via the common cyclometalated intermediate [IrClH{kappa-P,C-P(iPr)2CH(CH3)CH2}(NCMe)(PiPr3)] (31). The most effective C-H oxidative addition mechanism seems to involve three-coordinate intermediates generated by photochemical release of the alkene ligand. However, in the absence of light, the reaction rates display dependences upon NCMe concentration again indicating the intermediacy of five-coordinate acetonitrile adducts.  相似文献   

4.
C 1-Symmetric phosphino/phosphonite ligands are prepared by the reactions of Ph 2P(CH 2) 2P(NMe 2) 2 with ( S)-1,1'-bi-2-naphthol (to give L A ) or ( S)-10,10'-bi-9-phenanthrol (to give L B ). Racemic 10,10'-bi-9-phenanthrol is synthesized in three steps from phenanthrene in 44% overall yield. The complexes [PdCl 2( L A,B )] ( 1a, b), [PtCl 2( L A,B )] ( 2a, b), [Rh(cod)( L A,B )]BF 4 ( 3a, b) and [Rh( L A,B ) 2]BF 4 ( 4a, b) are reported and the crystal structure of 1a has been determined. A (31)P NMR study shows that M, a 1:1 mixture of the monodentates, PMePh 2 and methyl monophosphonite L 1a (based on ( S)-1,1 '-bi-2-naphthol), reacts with 1 equiv of [Rh(cod) 2]BF 4 to give the heteroligand complex [Rh(cod)(PMePh 2)( L 1a )]BF 4 ( 5) and homoligand complexes [Rh(cod)(PMePh 2) 2]BF 4 ( 6) and [Rh(cod)( L 1a ) 2]BF 4 ( 7) in the ratio 2:1:1. The same mixture of 5- 7 is obtained upon mixing the isolated homoligand complexes 6 and 7 although the equilibrium is only established rapidly in the presence of an excess of PMePh 2. The predominant species 5 is a monodentate ligand complex analogue of the chelate 3a. When the mixture of 5- 7 is exposed to 5 atm H 2 for 1 h (the conditions used for catalyst preactivation in the asymmetric hydrogenation studies), the products are identified as the solvento species [Rh(PMePh 2)( L 1a )(S) 2]BF 4 ( 5'), [Rh(S) 2(PMePh 2) 2]BF 4 ( 6') and [Rh(S) 2( L 1a ) 2]BF 4 ( 7') and are formed in the same 2:1:1 ratio. The reaction of M with 0.5 equiv of [Rh(cod) 2]BF 4 gives exclusively the heteroligand complex cis-[Rh(PMePh 2) 2( L 1a ) 2]BF 4 ( 8), an analogue of 4a. The asymmetric hydrogenation of dehydroamino acid derivatives catalyzed by 3a, b is reported, and the enantioselectivities are compared with those obtained with (a) chelate catalysts derived from analogous diphosphonite ligands L 2a and L 2b , (b) catalysts based on methyl monophosphonites L 1a and L 1b , and (c) catalysts derived from mixture M. For the cinnamate and acrylate substrates studied, the catalysts derived from the phosphino/phosphonite bidentates L A,B generally give superior enantioselectivities to the analogous diphosphonites L 2a and L 2b ; these results are rationalized in terms of delta/lambda-chelate conformations and allosteric effects of the substrates. The rate of hydrogenation of acrylate substrate A with heterochelate 3a is significantly faster than with the homochelate analogues [Rh( L 2a )(cod)]BF 4 and [Rh(dppe)(cod)]BF 4. A synergic effect on the rate is also observed with the monodentate analogues: the rate of hydrogenation with the mixture containing predominantly heteroligand complex 5 is faster than with the monophosphine complex 6 or monophosphonite complex 7. Thus the hydrogenation catalysis carried out with M and [Rh(cod) 2]BF 4 is controlled by the dominant and most efficient heteroligand complex 5. In this study, the heterodiphos chelate 3a is shown to be more efficient and gives the opposite sense of optical induction to the heteromonophos analogue 5.  相似文献   

5.
A series of picolyl-substituted NHC-bridged triangular complexes of Ag(I) and Cu(I) were synthesized upon reaction of the corresponding ligand precursors, [Him(CH(2)py)(2)]BF(4) (1a), [Him(CH(2)py-3,4-(OMe)(2))(2)]BF(4) (1b), [Him(CH(2)py-3,5-Me(2)-4-OMe)(2)]BF(4) (1c), [Him(CH(2)py-6-COOMe)(2)]BF(4) (1d), and [H(S)im(CH(2)py)(2)]BF(4) (1e), with Ag(2)O and Cu(2)O, respectively. Complexes [Cu(3)(im(CH(2)py)(2))(3)](BF(4))(3) (2a), [Cu(3)(im(CH(2)py-3,4-(OMe)(2))(2))(3)](BF(4))(3) (2b), [Cu(3)(im(CH(2)py-3,5-Me(2)-4-OMe)(2))(3)](BF(4))(3), (2c), [Ag(3)(im(CH(2)py-3,4-(OMe)(2))(2))(3)](BF(4))(3), (3b), [Ag(3)(im(CH(2)py-3,5-Me(2)-4-OMe)(2))(3)](BF(4))(3) (3c), [Ag(3)(im(CH(2)py-6-COOMe)(2))(3)](BF(4))(3) (3d), and [Ag(3)((S)im(CH(2)py)(2))(3)](BF(4))(3) (3e) were easily prepared by this method. Complex 2e, [Cu(3)((S)im(CH(2)py)(2))(3)](BF(4))(3), was synthesized by a carbene-transfer reaction of 3e, [Ag(3)((S)im(CH(2)py)(2))(3)](BF(4))(3), with CuCl in acetonitrile. The ligand precursor 1d did not react with Cu(2)O. All complexes were fully characterized by NMR, UV-vis, and luminescence spectroscopies and high-resolution mass spectrometry. Complexes 2a-2c, 2e, and 3b-3e were additionally characterized by single-crystal X-ray diffraction. Each metal complex contains a nearly equilateral triangular M(3) core wrapped by three bridging NHC ligands. In 2a-2c and 2e, the Cu-Cu separations are short and range from 2.4907 to 2.5150 ?. In the corresponding Ag(I) system, the metal-metal separations range from 2.7226 to 2.8624 ?. The Cu(I)-containing species are intensely blue photoluminescent at room temperature both in solution and in the solid state. Upon UV excitation in CH(3)CN, complexes 2a-2c and 2e emit at 459, 427, 429, and 441 nm, whereas in the solid state, these bands move to 433, 429, 432, and 440 nm, respectively. As demonstrated by (1)H NMR spectroscopy, complexes 3b-3e are dynamic in solution and undergo a ligand dissociation process. Complexes 3b-3e are weakly photoemissive in the solid state.  相似文献   

6.
Six calix[4]arenes each bearing two non-cyclic PR2 units attached at distal phenolic oxygen atoms, p-Bu t-calix[4]arene-25,27-(OPR2)2-26,28-(OR')2(R = OPh; R'= Prn, L1; R = OPh; R'= CH2CO2Et, L2; R= OPh; R'= CO2 cholesteryl, L3; R = Ph; R'= Prn, 4; R = Ph; R'= CH2CO2Et, L5; R = Ph; R'= CO2cholesteryl, L6) have been synthesized and their coordinative properties investigated. The diphosphites L1-L3, where the P centres are separated by 12 bonds, readily form chelate complexes provided the complexation reaction is achieved either by using a starting complex that possesses good leaving groups or by operating under high dilution in order to avoid oligomer formation. Thus, the cationic complexes [Rh(COD)L1]BF4 and [Rh(COD)L3]BF4 were both formed in high yield by reacting the appropriate diphosphite with either [Rh(COD)(THF)2]BF4 or [Rh(COD)2]BF4. At high dilution, reaction of L3 with the neutral complex [PdCl2(COD)] afforded the chelate complex [PdCl2L3] in 90% yield. The reaction of one equiv. of L1 with [Rh(acac)(CO)2] resulted in the formation of [Rh(acac)L1] without requiring high dilution conditions. When the latter reaction was carried out with 0.5 equiv. of L1, the bimetallic complex [{Rh(acac)(CO)}2(eta]1-P,eta1-P'-L1)] was formed instead. Reaction at high dilution of with the cyclometallated complex [Pd(o-C6H4CH2NMe2)(THF)2]BF4 gave the expected chelate complex [Pd(o-C6H4CH2NMe2)]BF4. The latter slowly converts in solution to an oligomer in which the ligand behaves as a (eta1-P,eta1-P') bridging ligand, thus leading to a less strained structure. All six ligands, when mixed with [Rh(acac)CO2], effectively catalyse the hydroformylation of octene and styrene. In the hydroformylation of octene, the linear aldehyde selectivities observed with L2 and L3 are significantly higher (linear : branched =ca. 10) than those obtained with the other 4 ligands of this study and also with respect to PPh3. Molecular modelling shows that the lower rim substituents of and form tighter pockets about the metal centre than do the other ligands and so sterically favour the formation of Rh(n-alkyl) intermediates over that of Rh(i-alkyl) ones. In styrene hydroformylation, all ligands result in the formation of unusually high amounts of the linear aldehyde, the b : l ratios being all close to 65 : 35. The highest activities were found when using an L/Rh ratio of 1/1.  相似文献   

7.
The binding properties of 1,4,7-triazacyclononane ([9]aneN3) to metal cations can be adapted through sequential functionalisation of the secondary amines with aminoethyl or aminopropyl pendant arms to generate ligands with increasing numbers of donor atoms. The new amino functionalised pendant arm derivative of 1,4,7-triazacyclononane ([9]aneN3), L1, has been synthesised and its salt [H2L1]Cl2 characterised by X-ray diffraction. The protonation constants of the ligands L1-L4 having one, two or three aminoethyl or three aminopropyl pendant arms, respectively, on the [9]aneN3 framework, and the thermodynamic stabilities of their mononuclear complexes with CuII and ZnII have been investigated by potentiometric measurements in aqueous solutions. In order to discern the protonation sites of ligands L1-L4, 1H NMR spectroscopic studies were performed in D2O as a function of pH. While the stability constants of the CuII complexes increase on going from L1 to L2 and then decrease on going from L2 to L3 and L4, those for ZnII complexes increase from L1 to L3 and then decrease for L4. The X-ray crystal structures of the complexes [Cu(L1)(Br)]Br, [Zn(L1)(NO3)]NO3, [Cu(L2)](ClO4)2, [Ni(L2)(MeCN)](BF4)2, [Zn(L4)](BF4)2.MeCN and [Mn(L4)](NO3)2.1/2H2O have been determined. In both [Cu(L1)(Br)]Br and [Zn(L1)(NO3)]NO3 the metal ion is five co-ordinate and bound by four N-donors of the macrocyclic ligand and by one of the two counter-anions. The crystal structures of [Cu(L2)](ClO4)2 and [Ni(L2)(MeCN)](BF4)2 show the metal centre in slightly distorted square-based pyramidal and octahedral geometry, respectively, with a MeCN molecule completing the co-ordination sphere around NiII in the latter. In both [Zn(L4)](BF4)2.MeCN and [Mn(L4)](NO3)2.1/2H2O the metal ion is bound by all six N-donors of the macrocyclic ligand in a distorted octahedral geometry. Interestingly, and in agreement with the solution studies and with the marked preference of CuII to assume a square-based pyramidal geometry with these types of ligands, the reaction of L4 with one equivalent of Cu(BF4)2.4H2O in MeOH at room temperature yields a square-based pyramidal five co-ordinate CuII complex [Cu(L6)](BF4)2 where one of the three propylamino pendant arms of the starting ligand has been cleaved to give L6.  相似文献   

8.
Reaction of 1,3-bis(2-pyridinylmethyl)-1H-imidazolium tetrafluoroborate, [H(pyCH(2))(2)im]BF(4), with silver oxide in dichloromethane readily yields [Ag((pyCH(2))(2)im)(2)]BF(4), 1.BF(4)(). 1.BF(4) is converted to the analogous Au(I)-containing species, [Au((pyCH(2))(2)im)(2)]BF(4), 3, by a simple carbene transfer reaction in dichloromethane. Further treatment with two equivalents of AgBF(4) produces the trimetallic species [AuAg(2)((pyCH(2))(2)im)(2)(NCCH(3))(2)](BF(4))(3), 4, which contains two silver ions each coordinated to the pyridine moieties on one carbene ligand and to an acetonitrile molecule in a T-shaped fashion. Monometallic [Ag((py)(2)im)(2)]BF(4), 5, and [Au((py)(2)im)(2)]BF(4), 6, are made analogously to 1.BF(4) and 3 starting from 1,3-bis(2-pyridyl)-imidazol-2-ylidene tetrafluoroborate, [H(py)(2)im]BF(4). Addition of excess AgBF(4) to 6 yields the helical mixed-metal polymer, ([AuAg((py)(2)im)(2)(NCCH(3))](BF(4))(2))(n), 7 which contains an extended Au(I)-Ag(I) chain with short metal-metal separations of 2.8359(4) and 2.9042(4) A. Colorless, monometallic [Hg((pyCH(2))(2)im)(2)](BF(4))(2), 8, is easily produced by refluxing [H(pyCH(2))(2)im)]BF(4) with Hg(OAc)(2) in acetonitrile. The related quinolyl-substituted imidazole, [H(quinCH(2))(2)im]PF(6), is produced analogously to [H(pyCH(2))(2)im]BF(4). [Hg((quinCH(2))(2)im)(2)](PF(6))(2), 9, is isolated in good yield as a white solid from the reaction of Hg(OAc)(2) and [H(quinCH(2))(2)im]PF(6). The reaction of [H(quinCH(2))(2)im]PF(6) with excess Ag(2)O produces the triangulo-cluster [Ag(3)((quinCH(2))(2)im)(3)](PF(6))(3), 11. All of these complexes were studied by (1)H NMR spectroscopy, and complexes 3-9 were additionally characterized by X-ray crystallography. These complexes are photoluminescent in the solid state and in solution with spectra that closely resemble those of the ligand precursor.  相似文献   

9.
A series of ruthenium(II) acetonitrile, pyridine (py), carbonyl, SO2, and nitrosyl complexes [Ru(bdmpza)(O2CR)(L)(PPh3)] (L = NCMe, py, CO, SO2) and [Ru(bdmpza)(O2CR)(L)(PPh3)]BF4 (L = NO) containing the bis(3,5-dimethylpyrazol-1-yl)acetato (bdmpza) ligand, a N,N,O heteroscorpionate ligand, have been prepared. Starting from ruthenium chlorido, carboxylato, or 2-oxocarboxylato complexes, a variety of acetonitrile complexes [Ru(bdmpza)Cl(NCMe)(PPh3)] (4) and [Ru(bdmpza)(O2CR)(NCMe)(PPh3)] (R = Me (5a), R = Ph (5b)), as well as the pyridine complexes [Ru(bdmpza)Cl(PPh3)(py)] (6) and [Ru(bdmpza)(O2CR)(PPh3)(py)] (R = Me (7a), R = Ph (7b), R = (CO)Me (8a), R = (CO)Et (8b), R = (CO)Ph) (8c)), have been synthesized. Treatment of various carboxylato complexes [Ru(bdmpza)(O2CR)(PPh3)2] (R = Me (2a), Ph (2b)) with CO afforded carbonyl complexes [Ru(bdmpza)(O2CR)(CO)(PPh3)] (9a, 9b). In the same way, the corresponding sulfur dioxide complexes [Ru(bdmpza)(O2CMe)(PPh3)(SO2)] (10a) and [Ru(bdmpza)(O2CPh)(PPh3)(SO2)] (10b) were formed in a reaction of the carboxylato complexes with gaseous SO2. None of the 2-oxocarboxylato complexes [Ru(bdmpza)(O2C(CO)R)(PPh3)2] (R = Me (3a), Et (3b), Ph (3c)) showed any reactivity toward CO or SO2, whereas the nitrosyl complex cations [Ru(bdmpza)(O2CMe)(NO)(PPh3)](+) (11) and [Ru(bdmpza)(O2C(CO)Ph)(NO)(PPh3)](+) (12) were formed in a reaction of the acetato 2a or the benzoylformato complex 3c with an excess of nitric oxide. Similar cationic carboxylato nitrosyl complexes [Ru(bdmpza)(O2CR)(NO)(PPh3)]BF4 (R = Me (13a), R = Ph (13b)) and 2-oxocarboxylato nitrosyl complexes [Ru(bdmpza)(O2C(CO)R)(NO)(PPh3)]BF4 (R = Me (14a), R = Et (14b), R = Ph (14c)) are also accessible via a reaction with NO[BF4]. X-ray crystal structures of the chlorido acetonitrile complex [Ru(bdmpza)Cl(NCMe)(PPh3)] (4), the pyridine complexes [Ru(bdmpza)(O2CMe)(PPh3)(py)] (7a) and [Ru(bdmpza)(O2CC(O)Et)(PPh3)(py)] (8b), the carbonyl complex [Ru(bdmpza)(O2CPh)(CO)(PPh3)] (9b), the sulfur dioxide complex [Ru(bdmpza)(O2CPh)(PPh3)(SO2)] (10b), as well as the nitrosyl complex [Ru(bdmpza)(O2C(CO)Me)(NO)(PPh3)]BF4 (14a), are reported. The molecular structure of the sulfur dioxide complex [Ru(bdmpza)(O2CPh)(PPh3)(SO2)] (10b) revealed a rather unusual intramolecular SO2-O2CPh Lewis acid-base adduct.  相似文献   

10.
The reaction of [Ag(MeCN)(4)]ClO(4) with N,N,N',N'-tetra(diphenylphosphanylmethyl)ethylenediamine (dppeda) in CH(2)Cl(2)/MeOH afforded an unexpected cationic binuclear complex [Ag(2)(L(1))(2)(η,η-μ-ClO(4))(2)](ClO(4))(2) (L(1) = N,N'-bis(diphenylphosphanylmethyl)-3H-4,5-dihydroimidazole-1-ium) (1). Compound 1 was also prepared in high yield from reactions of [Ag(MeCN)(4)]ClO(4) with N,N'-bis(diphenylphosphanylmethyl)ethylenediamine (bdppeda) in the presence of formaldehyde (HCHO) or formic acid (HCOOH). Analogous reactions of AgCl with bdppeda and HCHO resulted in the formation a neutral binuclear complex [Ag(2)(L(2))(2)(μ-Cl)(2)] (L(2) = N,N-bis(diphenylphosphanylmethyl)-tetrahydroimidazole) (2). Treatment of 1 with concentrated HCl gave rise to a partially anion-exchanged product [Ag(2)(L(1))(2)(μ-Cl)(2)](ClO(4))(2) (3). Compounds 1 and 3 have a similar cationic binuclear structure, in which a [Ag(2)(η,η-μ-ClO(4))(2)] or [Ag(2)(μ-Cl)(2)] ring is sandwiched by two in situ-formed cationic L(1) ligands. The L(1) ligand may be generated by the Ag(I)-assisted condensation reaction between bdppeda and HCHO or HCOOH. Compound 2 holds a neutral binuclear structure, in which a [Ag(2)(μ-Cl)(2)] ring is connected by two in situ-formed L(2) ligands from its top and bottom sites. The neutral ligand L(2) may be produced from another Ag(I)-assisted condensation reaction between bdppeda and HCHO. The in situ formation of the L(1) and L(2) ligands provides a new route to the N-heterocyclic diphosphine ligands, and an interesting insight into the coordination chemistry of their metal complexes.  相似文献   

11.
A series of clathrate and metal complexes with cyclotriveratrylene-like molecular host ligands show a similar dimeric homomeric inclusion motif in which a ligand arm of one host is the intra-cavity guest of another and vice versa. This "hand-shake" motif is found in the trinuclear transition metal complex [Cu(3)Cl(6)(1)]CH(3)CN1.5 H(2)O in which 1 is tris(4-[2,2',6',2'-terpyridyl]benzyl)cyclotriguaiacylene; in the self-included M(4)L(4) tetrahedral metallo-supramolecular assembly [Ag(4)(2)(4)] (BF(4))(4) in which 2 is tris-(2-quinolylmethyl)cyclotriguaiacylene; in the 1D coordination chains [Ag(4)]ReO(4) CH(3)CN and [Ag(5)]SbF(6)3 DMFH(2)O in which 4 is tris(1H-imidazol-1-yl)cyclotriguaiacylene and 5 is tris{4-(2-pyridyl)benzyl}cyclotriguaiacylene; and in the acetone clathrate of tris{4-(2-pyridyl)benzyl-amino}cyclotriguaiacylene. Clathrates of ligands 2 and 5 do not show the same dimeric motif, although 2 has an extended homomeric inclusion motif that gives a hexagonal network.  相似文献   

12.
Reactions of the arene-linked bis(pyrazolyl)methane ligands m-bis[bis(1-pyrazolyl)methyl]benzene (m-[CH(pz)2]2C6H4, Lm) and 1,3,5-tris[bis(1-pyrazolyl)methyl]benzene (1,3,5-[CH(pz)2]3C6H3, L3) with BF4- salts of divalent iron, zinc, and cadmium result in fluoride abstraction from BF4- and formation of fluoride-bridged metallacyclic complexes. Treatment of Fe(BF4)2.6H2O and Zn(BF4)2.5H2O with Lm leads to the complexes [Fe2(mu-F)(mu-Lm)2](BF4)3 (1) and [Zn2(mu-F)(mu-Lm)2](BF4)3 (2), in which a single fluoride ligand and two Lm molecules bridge the two metal centers. The reaction of [Cd2(thf)5](BF4)4 with Lm results in the complex [Cd2(mu-F)2(mu-Lm)2](BF4)2 (3), which contains dimeric cations in which two fluoride and two Lm ligands bridge the cadmium centers. Equimolar amounts of the tritopic ligand L3 and Zn(BF4)2.5H2O react to give the related monofluoride-bridged complex [Zn2(mu-F)(mu-L3)2](BF4)3 (4), in which one bis(pyrazolyl)methane unit on each ligand remains unbound. NMR spectroscopic studies show that in acetonitrile the zinc metallacycles observed in the solid-state remain intact in solution.  相似文献   

13.
The first neutral, [IrClF(2)(NHC)(COD)] and [IrClF(2)(CO)(2)(NHC)] (NHC = IMes, IPr), and cationic, [IrF(2)py(IMes)(COD)][BF(4)] and [IrF(2)L(CO)(2)(NHC)][BF(4)] (NHC = IMes, L = PPh(2)Et, PPh(2)CCPh, py; NHC = IPr, L = py), NHC iridium(III) fluoride complexes, have been synthesised by the xenon difluoride oxidation of iridium(I) substrates. The stereochemistries of these iridium(III) complexes have been confirmed by multinuclear NMR spectroscopy in solution and no examples of fluoride-trans-NHC arrangements were observed. Throughout, CO was found to be a better co-ligand for the stabilisation of the iridium(III) fluoride complexes than COD. Attempts to generate neutral trifluoroiridium(III) complexes, [IrF(3)(CO)(NHC)], via the ligand substitution reaction of [IrF(3)(CO)(3)] with the free NHCs were unsuccessful.  相似文献   

14.
The reactions of [AuClL] with Ag(2)O, where L represents the heterofunctional ligands PPh(2)py and PPh(2)CH(2)CH(2)py, give the trigoldoxonium complexes [O(AuL)(3)]BF(4). Treatment of these compounds with thio- or selenourea affords the triply bridging sulfide or selenide derivatives [E(AuL)(3)]BF(4) (E=S, Se). These trinuclear species react with Ag(OTf) or [Cu(NCMe)(4)]PF(6) to give different results, depending on the phosphine and the metal. The reactions of [E(AuPPh(2)py)(3)]BF(4) with silver or copper salts give [E(AuPPh(2)py)(3)M](2+) (E=O, S, Se; M=Ag, Cu) clusters that are highly luminescent. The silver complexes consist of tetrahedral Au(3)Ag clusters further bonded to another unit through aurophilic interactions, whereas in the copper species two coordination isomers with different metallophilic interactions were found. The first is analogous to the silver complexes and in the second, two [S(AuPPh(2)py)(3)](+) units bridge two copper atoms through one pyridine group in each unit. The reactions of [E(AuPPh(2)CH(2)CH(2)py)(3)]BF(4) with silver and copper salts give complexes with [E(AuPPh(2)CH(2)CH(2)py)(3)M](2+) stoichiometry (E=O, S, Se; M=Ag, Cu) with the metal bonded to the three nitrogen atoms in the absence of AuM interactions. The luminescence of these clusters has been studied by varying the chalcogenide, the heterofunctional ligand, and the metal.  相似文献   

15.
Lin PC  Chen HY  Chen PY  Chiang MH  Chiang MY  Kuo TS  Hsu SC 《Inorganic chemistry》2011,50(21):10825-10834
The decarbonylation reaction of ferric carbonyl dicationic [Cp(2)Fe(2)(μ-SEt)(2)(CO)(2)](BF(4))(2) [1(BF(4))(2)] carried out in refluxing acetonitrile affords a binuclear iron-sulfur core complex [Cp(2)Fe(2)(μ-SEt)(2)(CH(3)CN)(2)](BF(4))(2) [2(BF(4))(2)] containing two acetonitrile coordinated ligands. The treatment of 2(BF(4))(2) with 2 equiv of the 1,4-diisocyanobenzene (1,4-CNC(6)H(4)NC) results in the formation of the diisocyanide complex [Cp(2)Fe(2)(μ-SEt)(2)(1,4-CNC(6)H(4)NC)(2)](BF(4))(2) [3(BF(4))(2)]. The rectangular tetranuclear iron thiolate aryldiisocyanide metallocyclophane complex [Cp(4)Fe(4)(μ-SEt)(4)(μ-1,4-CNC(6)H(4)NC)(2)](BF(4))(4) [4(BF(4))(4)] has been synthesized by a self-assembly reaction between equimolar amounts of 2(BF(4))(2) and 1,4-diisocyanobenzene or by a stepwise route involving mixing of a 1:1 molar ratio of complexes 2(BF(4))(2) and 3(BF(4))(2). Chemical reduction of 4(BF(4))(4) by KC(8) was observed to produce the reduction product 4(BF(4))(2). The spectroscopic and electrochemical properties of the iron-sulfur core complexes 1(PF(6))(2), 3(BF(4))(2), 4(BF(4))(4), and 4(BF(4))(2) were determined. Finally, differences between the redox control cavities of rectangular tetranuclear iron thiolate aryldiisocyanide complexes are revealed by a comparison of the X-ray crystallographically determined structures of complexes 4(BF(4))(4) and 4(BF(4))(2).  相似文献   

16.
Dong YB  Sun T  Ma JP  Zhao XX  Huang RQ 《Inorganic chemistry》2006,45(26):10613-10628
Four new oxadiazole-bridging ligands (L1-L4) were designed and synthesized by the reaction of 2,5-bis(2-hydroxyphenyl)-1,3,4-oxadiazole with isonicotinoyl chloride and nicotinoyl chloride, respectively. L1 and L3 are unsymmetric single-armed ligands (4- or 3-pyridinecarboxylate arm), and L2 and L4 are symmetric double-armed ligands (4- or 3-pyridinecarboxylate arms). Nine new complexes, [Ag(L1)]PF6.CH3OH (1), [Ag(L1)]ClO4.CH3OH (2), Cu(L2)(NO3)2.2(CH2Cl2) (3), [Cu(L2)2](ClO4)2.2(CH2CCl2) (4), Cu(L2)Cl2 (5), [Cu4(L3)2(H2O)2](L3)4(ClO4)4 (6), [Ag(L4)(C2H5OH)]ClO4 (7), [Ag(L4)(C2H5OH)]BF4 (8), and [Ag(L4)(CH3OH)]SO3CF3 (9), were isolated from the solution reactions based on these four new ligands, respectively. L1, L2, and L3 act as convergent ligands and bind metal ions into discrete molecular complexes. In contrast, L4 exhibits a divergent spacer to link metal ions into one-dimensional coordination polymers. New coordination compounds were fully characterized by infrared spectroscopy, elemental analysis, and single-crystal X-ray diffraction. In addition, the luminescent and electrical conductive properties of these new compounds were investigated.  相似文献   

17.
The new ligands 1,1,4,4-tetra(1-pyrazolyl)butane [CH(pz)(2)(CH(2))(2)CH(pz)(2), L2] and 1,1,5,5-tetra(1-pyrazolyl)pentane [CH(pz)(2)(CH(2))(3)CH(pz)(2), L3] have been prepared to determine the structural changes in silver(I) complexes, if any, that accompany the lengthening of the spacer group between two linked bis(pyrazolyl)methane units. Silver(I) complexes of both ligands with BF(4)(-) and SO(3)CF(3)(-) as the counterion have the formula [Ag(2)(micro-L)(2)](counterion)(2). These complexes have a cyclic dimeric structure in the solid state previously observed with the shorter linked ligand CH(pz)(2)CH(2)CH(pz)(2). Similar chemistry starting with AgNO(3) for L2 yields a complex of the empirical formula [Ag(2)[micro-CH(pz)(2)(CH(2))(2)CH(pz)(2)](3)](NO(3))(2) that retains the cyclic dimeric structure, but bonding of an additional ligand creates a coordination polymer of the cyclic dimers. In contrast, coordination of the nitrate counterion to silver in the complex of L3 leads to the formation of the coordination polymer of the empirical formula [Ag(micro-CH(pz)(2)(CH(2))(3)CH(pz)(2))]NO(3). All six new complexes have extended supramolecular structures based on noncovalent interactions supported by the counterions and the functional groups designed into the ligands.  相似文献   

18.
The title compound reacted rapidly with CN(t)Bu at room temperature by displacing the BF(4)(-) ligand and incorporating three molecules of isocyanide to yield the electron-precise complex [Mo(2)Cp(2)(μ-PPh(2))(2)(CN(t)Bu)(3)(CO)](BF(4))(2), which was obtained as a mixture of cis and trans isomers. Reaction with several HER(n) molecules (HER(n) = HSPh, HSePh, H(2)PCy) took place with formal elimination of HBF(4) and spontaneous carbonylation to give the electron-precise cations [Mo(2)Cp(2)(μ-ER(n))(μ-PPh(2))(2)(CO)(2)](+). Reactions with several bidentate ligands (L(2)H) having acidic E-H bonds (2-hydroxypyridine, 2-mercaptopyridine, cathecol, 2-aminophenol, and 2-aminothiophenol) proceeded analogously with deprotonation of these bonds with the preference E = S > O > N. The N,O-donor ligands yielded 32-electron chelate derivatives of the type [Mo(2)Cp(2)(O,N-L(2))(μ-PPh(2))(2)(CO)]BF(4) (L(2) = OC(5)H(4)N, OC(6)H(4)NH(2)), whereas the S,N-donors yielded 34-electron, S-bridged complexes [Mo(2)Cp(2)(μ-S:S,N-L(2))(μ-PPh(2))(2)(CO)]BF(4) [L(2) = SC(5)H(4)N (Mo-Mo = 2.8895(8) ?), SC(6)H(4)NH(2)]. However, reaction with catechol gave a monodentate derivative [Mo(2)Cp(2)(O-OC(6)H(4)OH)(μ-PPh(2))(2)(CO)]BF(4). In contrast, reactions of the title complex with several carboxylic acids and related species (acetic, benzoic, and thioacetic acids, acetamide, thioacetamide, and sodium diethyldithiocarbamate) were insensitive to the nature of the donor atoms and gave in all cases 32-electron chelate derivatives of type [Mo(2)Cp(2)(κ(2)-L(2))(μ-PPh(2))(2)(CO)]BF(4). All of the above cations having Mo-bound OH, NH, or NH(2) groups were easily deprotonated upon reaction with 1,8-diazabicycloundec-7-ene (DBU) or other bases to give neutral complexes which exhibited different coordination motifs depending on the donor atoms, including chelate complexes of the type [Mo(2)Cp(2)(κ(2)-L(2)')(μ-PPh(2))(2)(CO)] (L(2)' = OC(6)H(4)O, OC(6)H(4)NH), the bridged complexes [Mo(2)Cp(2)(μ-S,N:S,N-SC(6)H(4)NH)(μ-PPh(2))(2)] and [Mo(2)Cp(2){μ-S,N-N(S)CMe}(μ-PPh(2))(2)], and the terminal acetylimido complex [Mo(2)Cp(2){N-N(O)CMe}(μ-PPh(2))(2)(CO)].  相似文献   

19.
The 2-(N-alkylcarboxamide)-6-iminopyridine ligands (L1-L7) can bind as either mono-anionic tridentate N^N^N ligands on reaction with PdCl(2)(CH(3)CN)(2), to form complexes LPdCl (C1-C7), or as neutral tridentate N^N^O ligands with NiCl(2)·6H(2)O, to produce complexes LNiCl(2) (C8-C14). All metal complexes were characterized by IR spectroscopy and elemental analysis, and in the case of the palladium complexes, by (1)H and (13)C NMR spectroscopy. The crystal structures of C3, C4, C6, C10, and C12 were determined by X-ray crystallography, and revealed a distorted square geometry around the palladium centre, whereas for nickel, a distorted square-pyramidal geometry was adopted. The representative palladium complex (C3) was further reacted with AgBF(4) in acetonitrile affording the salt [L3Pd(CH(3)CN)][BF(4)] (C15) and the structure of this was confirmed by single-crystal X-ray diffraction. By contrast, carrying out the reaction in dichloromethane rather than acetonitrile, in the presence of malononitrile (CNCH(2)CN), resulted in the formation of the bimetallic palladium complex [L3Pd(CNCH(2)CN)PdL3]·2[BF(4)] (C16). Upon activation with diethylaluminium chloride, all the nickel complexes showed high activity for ethylene dimerization. Furthermore, the palladium complexes exhibited good activities in the vinyl-polymerization of norbornene upon activation with MAO.  相似文献   

20.
Three angular ditopic ligands (1,3-bis(benzimidazol-1-ylmethyl)-4,6-dimethylbenzene L(1), 1,3-bis(benzimidazol-1-ylmethyl)-2,4,6-trimethylbenzene L(2), and 1,4-bis(benzimidazol-1-ylmethyl)-2,3,5,6-tetramethylbenzene L(3)) and one tripodal ligand 1,3,5-tris(benzimidazol-1-ylmethyl)-2,4,6-trimethylbenzene L(4) have been prepared. Reaction of these shape-specific designed ligands with different metal salts affords a series of discrete molecular architectures: [Ag(2)L(1)(2)](BF(4))(2) 1, [Ag(2)L(2)(2)](CF(3)SO(3))(2) 2, [CF(3)SO(3)(-) subset Ag(2)L(3)(2)]CF(3)SO(3) 3, [CF(3)SO(3)(-) subset Ag(2)L(3)(3)]CF(3)SO(3) 4, [ClO(4)(-) subset Cu(2)L(2)(4)](ClO(4))(3) 5, [4H(2)O subset Ni(2)L(2)(4)Cl(4)].6H(2)O 6, [BF(4)(-) subset Ag(3)L(4)(2)](BF(4))(2) 7, [ClO(4)(-) subset Ag(3)L(4)(2)](ClO(4))(2) 8, and [CuI(3)(2-) subset Cu(3)L(4)(2)](2)[Cu(2)I(4)] 9. The compounds were characterized by elemental analysis, ESI-MS, IR, and NMR spectroscopy, and X-ray crystallography. 1 is a dinuclear metallacycle with 2-fold rotational symmetry in which two syn-conformational L(1) ligands are connected by two linearly coordinated Ag(+) ions. 2 and 3 are structurally related, consisting of rectangular structures assembled from two linearly coordinated Ag(+) ions and two L(2) or L(3) ligands. The structure of 4 is a trigonal prismatic box consisting of two Ag(+) ions in trigonal planar coordination linked by three L(3) ligands, while the structures of 5 and 6 are tetragonal prismatic cages constructed by two square planar Cu(2+) or Ni(2+) ions linked by four L(2) ligands. The topologies of 7-9 are similar to that of 4; however, these three structures are assembled from three linearly coordinated Ag(+) or Cu(+) ions and two tripodal ligands, representing an alternative strategy to assembling a trigonal prism. (1)H NMR and ESI-MS were utilized to elucidate the solution structures of these macrocycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号