首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study investigated the rate of temperature change within axes of Poncirus trifoliata during cooling and warming by various methods. Cooling rates ranged between 0.17 and 170 degree (C per second, and warming rates of 1.25 and 600 degree C per second were measured when axes were warmed at room temperature or in water at 40 degree C, respectively. Partial drying increased the cooling rate within axes in direct contact with the cryogen, but did not affect the cooling or warming rates within axes enclosed in a double layer of lightweight aluminium foil. The procedures described illustrate the orders of magnitude that separate extremes of the range of cooling or warming rates attained using methods commonly employed in cryopreservation studies. Quantifying these rates allows the relationship between cooling rate, water content and survival of hydrated embryonic axes to be explored.  相似文献   

2.
The present study reports on the effects of rapid dehydration, chemical cryoprotectants and various cooling rates on survival, assessed by the ability for both root and shoot development, of embryonic axes excised with a small portion of each cotyledon, from mature, recalcitrant seeds of Landolphia kirkii. All axes withstood rapid (flash) drying to a water content of c. 0.28 g water per g dry mass; however, the use of chemical cryoprotectants before flash drying was lethal. Rapid cooling rates were detrimental to axes flash-dried to 0.28 g water per g dry mass, reducing survival to 10% and 0% after exposure to -196 degree C and -210 degree C, respectively. Ultrastructural examination revealed that decompartmentation and loss of cellular integrity were associated with viability loss after rapid cooling to cryogenic temperatures, although lipid bodies retained their morphology. Hence, lipid crystallisation was not implicated in cell death following dehydration, exposure to cryogenic temperatures and subsequent rewarming and rehydration. Cooling at 1 degree C per min facilitated survival of 70% of axes with attached cotyledonary segments at 0.28 g water per g dry mass after exposure to -70 degree C, with 45% viability retention when further cooled at 15 degree C per min to -180 degree C. However, no axes excised without attached cotyledonary segments produced shoots after cryogenic exposure. The use of slow cooling rates is promising for cryopreservation of mature axes of L. kirkii, but only when excised with a portion of each cotyledon left attached.  相似文献   

3.
Embryonic axes of Citrus sinensis L. were successfully cryopreserved. While fully hydrated unfrozen axes germinated 100%, survival decreased as axes water content dropped, and total loss of viability was observed when the water content dropped to 0.04 and 0.10 mg H2O/mg dry mass, for axes without and with sucrose preculture, respectively. Fully hydrated axes did not survive exposure to liquid nitrogen. Highest seedling recovery (93-100%) for untreated axes was observed at 0.26 to 0.15 mg H2O/mg dry mass. Differential scanning calorimetry revealed the presence of broad melting peaks in fully hydrated embryonic axes. The size of the melting peak diminished as water was removed by desiccation. Minimum melting of water was observed at the point axes survived cryopreservation. Occurrence of a glass transition upon warming was not a condition for axes to survive liquid nitrogen exposure. In untreated axes, glucose, increased with desiccation to 0.2 mg H2O/mg dry mass, and decreased as the axes were desiccated to lower water contents. Fructose and sucrose levels did not increase when untreated samples were desiccated for the same periods of time. Raffinose and stachyose levels decreased as untreated and precultured embryonic axes were desiccated. In sucrose precultured axes, sucrose and fructose levels increased when they were dehydrated, reaching maximum levels at 0.2 mg H2O/mg dry mass. Tissue glucose did not change significantly with desiccation. Raffinose and stachyose levels dropped as precultured embryonic axes were dried.  相似文献   

4.
The encapsulation-dehydration cryopreservation protocol is critically dependent upon the evaporative desiccation step, which must optimise survival with the retention of glass stability on sample cooling and rewarming. Desiccation is usually achieved evaporatively by drying in a sterile airflow. However, chemical desiccation using silica gel has advantages for laboratories that do not have environmental control and/or which are exposed to high relative humidities and risks of microbial contamination. This study characterised thermal profiles of silica gel-desiccated encapsulated shoot-tips of two Ribes species using Differential Scanning Calorimetry. For both species silica gel-desiccation at 16 degrees C for 5 h decreased bead water content from ca. 75 to 28% fresh weight (3.8 to 0.4 g x g(-1) dry weight); further desiccation (for 6 and 7 h) reduced the bead water content to 21% (0.3 g x g(-1) dry weight). These changes in water status altered the thermal properties of beads for both species. After 7 h desiccation over silica gel stable glass transitions were observed on both cooling and rewarming of beads containing meristems. Tg mid-point temperatures ranged from -78 to -51 degrees C (cooling) and from -88 to -54 degrees C (warming) [at cooling and warming rates of 10 and 5 degrees C min(-1), respectively] after 5 to 7 h silica gel-desiccation. Post-cryopreservation viability of both species was ca. 63%. Thermal analysis studies revealed that an encapsulation/dehydration protocol using silica gel as a desiccant should comprise a minimum 5 h drying (at 16 degrees C). This reduces bead moisture content to a critical point (ca. 0.4 g x g(-1) dry weight) at which stable glasses are formed on cooling and rewarming. It is concluded that silica gel has advantages for use as a desiccant for alginate-encapsulated plant meristems by promoting stable vitrification and is useful in laboratories and/or geographical locations where environmental conditions are not under stringent control.  相似文献   

5.
Twigs of Salix species are candidates for cryopreservation procedures because they become tolerant of freezing temperatures during mid-winter. We examined several variables in developing a two-step cryopreservation procedure for sections from these twigs. Samples of Salix triandra cooled to -30 or -35 degree C and then transferred to the vapor phase over liquid nitrogen gave the greatest percent shoot formation. Cooling rate to -35 degree C had a major influence on shoot formation. Samples cooled at rates greater than 10 degree C/hour showed no shoot formation. The highest percent of shoot formation was achieved by cooling at 0.21 degree C/hour. Cooling rate from -35 degree C to liquid nitrogen did not influence shoot formation. Warming procedures affected shoot formation. Transferring samples from -160 degree C to either a +2 degree C cold room or to -3 degree C methanol gave similar levels of shoot formation. No shoot formation occurred either with warming in +40 degree C water or very slowly in a Styrofoam box. Eight of eleven Salix taxa tested using the established protocol had significant levels of shoot formation after cryogenic treatment.  相似文献   

6.
This study examines different factors included in the cryopreservation protocols for Quercus ilex and Q. suber embryonic axes. In vitro incubation temperature played an important role in the appropriate development of Q. ilex axes, as 15 degrees C was superior to 25 degrees C. Q. suber axes proved to be more sensitive to desiccation and cooling. Poor survival (35%) was observed when axes were included into cryovials and then in liquid nitrogen, and none when immersed in sub-cooled liquid nitrogen (-210 degrees C). Q. ilex axes showed poorly organised development in vitro (c. 50% of non-cooled axes showed shoot development). However, c. 80% survival was observed after cryopreservation (either in liquid nitrogen or sub-cooled liquid nitrogen at 0.34 g water / g dry weight), of which c. 15% showed shoot development.  相似文献   

7.
In a continuing study to improve the efficiency of dormant bud cryopreservation for tissues hardened in maritime climates, the water status of dormant buds was monitored between -4 degree C and recovery from liquid nitrogen (LN). Measurement of water content, simple thermal analysis and differential scanning calorimetry were employed. Buds did not lose water during cooling to, or holding at -30 degree C indicating that cryodehydration and/or other adaptive responses contributed during this essential step. A bud exotherm that was an artefact of warming was detected due to necessary handling at -4 degree C before cooling to -30 degree C. There were no significant differences between cultivars with respect to water status at -30 degree C or immediately upon rewarming from LN despite significant differences in post-LN survival. Buds rehydrated in 5 days, but up to 14 days may be needed for recovery for some cultivars. In some instances buds could be grafted without rehydration, taking up water across the early graft union.  相似文献   

8.
A study on cryopreservation of excised embryonic axes of fifteen species of the amaryllidaceae is reported. Embryonic axes that after flash-drying had a water content in the range 0.4 to 0.1 g/g and survival greater than 60% were selected for cryopreservation procedures. The highest post-thaw viabilities (roots and shoots produced) across all species were recorded for embryonic axes subjected to rapid rather than slow cooling. With rapid cooling and no cryoprotection, the highest post-thaw viabilities for the fifteen species investigated was 0% in one species; ranged between 10 and 35% for nine species; and between 45 and 55% for five species. With cryoprotection and rapid cooling the highest post-thaw viabilities for these fifteen species was 0% for one species; ranged between 15 and 35% for six species; and between 40 and 75% for eight species. The highest post-thaw survival in ten out of fifteen species was obtained for axes dried to between 0.24 +/- 0.06 and 0.14 +/- 0.08 g/g(-1) (and rapidly cooled). With only one exception (Strumaria discifera; 45%), post-thaw survival after slow cooling ranged between 10 and 30%. Survival after vitrification plus slow cooling was achieved for seven species but was never higher than post-thaw survival in non-cryoprotected, rapidly cooled axes. The results suggest that species within the same family can exhibit commonalities in terms of amenability to cryopreservation techniques but for maximum success, axis water content and cooling rate particularly, must be optimised for each species in the family independently.  相似文献   

9.
A study on zygotic axes of the recalcitrant seeds of Ekebergia capensis compared two cryopreservation methods, partial desiccation, and encapsulation-dehydration, and also investigated a method to promote shoot production. High (80 percent) survival (assessed as root production) was obtained after direct immersion into liquid nitrogen of axes rapidly dehydrated by flash drying for 20 min to a water content about 0.4 g water per g dry mass. In contrast, no survival at all was obtained of axes that were first encapsulated, then desiccated for three hours to the same water concentration as those fast-dried, and then placed in a cryovial and immersed in liquid nitrogen. Axes encapsulated after cryopreservation germinated both in vitro and in soil, and could be stored at room temperatures for several weeks while maintaining germinability, thus producing synseeds capable of distribution. However, shoot production after cryopreservation was seldom observed. The inclusion of the plant growth regulator, N6-benzyl adenine (BA) in the MS-based recovery medium promoted vigorous multiple shoot formation. Microscopical examination of embryos of E. capensis revealed that the cotyledonary insertions were contiguous with the shoot apex, leading to the conclusion that injury to, and ultimate necrosis of, the apical meristem following severing of these connections was a primary cause of the observed lack of, or poor, shoot development in excised axes (whether cryopreserved or not). The study demonstrated that it may be possible to resolve two of the problems facing attempts at cryopreservation of axes of recalcitrant seeds; lack of shoot production and difficulty of distribution of cryopreserved material for re-introduction.  相似文献   

10.
Daws MI  Pritchard HW 《Cryo letters》2008,29(3):189-198
The effects of fruit maturity, at the time of natural dispersal, on subsequent desiccation tolerance and sub-zero storage was investigated in three lots of Acer pseudoplatanus (sycamore) collected from northern to southern Europe. Fruits from the native plant distribution range in Italy had significantly higher desiccation tolerance (0.16 g water per g DW) than those from England (0.30) and Norway (0.50), confirming that the maximum potential desiccation tolerance in sycamore exceeds that of the recalcitrant type. In contrast, the unfrozen water content varied only slightly between seedlots, but systematically reduced with development (0.35 to 0.27 g water per g DW). Maximum survival (60 percent fruit germination) of seven days sub-zero temperature storage coincided with drying the Italian fruit lot to c. 0.2 g water per g DW followed by holding at -20 degree C, above the onset temperature for freezing, or at -196 degree C (liquid nitrogen). Fruit survival was much lower in the Italian fruits when held at this water content and -70 degree C, and in all other combinations of water content, temperature and fruit lot provenance. As the risk of nucleation in partially dried fruits held at -20 degree C is high, we recommend sycamore fruits are cryopreserved for long-term conservation.  相似文献   

11.
A binary system water-oxyethylated glycerol with polymerization degree of n=30 (OEGn=30) is studied over the concentration range of 0-100% (w/w) and the temperature range of 123-283 K by differential scanning calorimetry (DSC). A phase diagram of this system is constructed at the average cooling rate of 200 K-1 per min and the warming rate of 0.5 K-1 per min. Ice crystallization occurs and 70% (w/w) unfrozen residues remain during cooling in the OEGn=30 concentration range of 0-45% (w/w). The system hardens in the amorphous state during cooling and ice crystallization occurs during warming in the range of 46-62% (w/w). Crystallization is observed neither during the cooling nor the subsequent warming in the range of 63-74% (w/w). OEGn=30 crystallization occurs in the range of 75-100% (w/w). Each OEGn=30 molecule can strongly bind to 48 water molecules. In parallel with dsc study, the water-OEGn=30 system is investigated by cryomicroscopy in the temperature range of 173-283 K. Cryomicrographs of the solidified solutions representing each of the four concentration bands mentioned above are given.  相似文献   

12.
Excised embryonic axes from seeds of three taxa, namely, Citrus suhuiensis cv. limau madu, Citrumelo (Citrus paradisi x Poncirus trifoliate) and Fortunella polyandra, were desiccated in a laminar airflow, over silica gel, and ultra-rapidly. Desiccation sensitivity (WC50) was estimated for each taxon using the quantal response model. High desiccation tolerance (WC50 = 0.11 g water per g dry mass. g/gdw) was observed for limau madu embryonic axes desiccated in a laminar airflow and ultra-rapidly (WC50 =0.10 g/gdw). Desiccation tolerance was substantially lower (WC50 = 0.19 g/gdw) for silica gel dehydration. Similarly, high desiccation tolerance (WC50 = 0.15 g/gdw) was associated with F. polyandra embryonic axes when desiccated in a laminar airflow, while a lower desiccation tolerance (WC50 = 0.17 g/gdw) was observed with silica gel dehydration. Ultra-rapid desiccation led to the highest desiccation tolerance (WC50 = 0.14 g/gdw). The dehydration rate, however, had no influence on desiccation tolerance (WC50 ~ 0.14 g/gdw) for Citrumelo embryonic axes. After each desiccation period, embryonic axes were directly immersed in liquid nitrogen (LN) followed by rapid rewarming. Normal seedling recovery of 80 to 83% for excised embryonic axes of limau madu was observed for laminar airflow and ultra-rapid dehydration, but for silica gel dehydration, 57% recovery was obtained. Similarly, for Citrumelo, high recoveries of 100% and 97% were obtained from axes desiccated in a laminar airflow and using ultra-rapid dehydration, respectively, whereas a lower value was associated with silica gel dehydration (80%). For F. polyandra, 50% recovery was obtained both for laminar airflow and ultra-rapid dehydration, while much lower recovery (43%) was associated with silica gel dehydration. Regardless of the drying method employed, axis survival percentages following exposure to LN were commensurate with the desiccation sensitivity pattern.  相似文献   

13.
We investigated the effects of desiccation, rehydration and cryopreservation on the viability of seeds of a wild mountain species and seven clones of Salix caprea L. Seeds responded differently to all treatments depending on clone, seed initial moisture content (MC) and seed vigour. Fresh seeds of two randomly selected clones tolerated desiccation to MC 8.5-9.6 % FW (0.09-0.11 g water per g dry mass. g/gdw) without any noticeable loss in viability and were successfully cryopreserved at MCs ranging from 8.5 to 23.4 % (0.09-0.30 g/gdw). Storage at 5 degree C for approximately 10 weeks significantly reduced the viability of seed lots of a wild species and of three S. caprea clones, whilst viability of seeds of four other clones remained unaffected. Since all clones tested were genetically derived from one tree, this variation is unlikely to be of maternal origin. Most probably paternal x environmental factors have influenced seed behavior during desiccation and storage. As viability decreased due to partial ageing, seeds became more susceptible to desiccation stress. When seeds of three clones were cryopreserved, the hydration window for survival was wider for highly vigorous seeds (c. 0.05-0.28 g/gdw) than for seeds with intermediate vigour (c. 0.10-0.24 g/gdw) and low vigour (c. 0.20-0.37 g/gdw). Rehydration to MC above 0.15 g/gdw improved germination of low vigour seeds, both in controls and after cryopreservation. In contrast, cryopreservation of high vigour seeds rehydrated to MCs above 0.11 g/gdw resulted in a sharp decrease in normal seedling production. Whilst no effect of cryogenic temperature on germination and normal seedling production was observed when seeds of seven clones were cryopreserved within their hydration windows, the results indicate the need to account for seed lot vigour when designing cryopreservation protocols.  相似文献   

14.
Curves of specific heat plotted against temperature are presented for a synthetic zeolite (Linde 5A) at a number of water contents. Above a threshold water content of 0·233 g of water per gram of zeolite the curves showed a peak, centred about −30°C, that is ascribed to the fusion of sorbed water in the zeolite cavities. Above a second threshold near 0·28 g/g, a second peak was found between −5°C and 0°C. This peak arises from the fusion of water on the external surface of the zeolite granules. All the water in the system was distinguishable from ordinary water up to the content 0·306 g/g, which is therefore saturation water content at 0°C. Up to the first threshold there is no freezable water and no clustering of water molecules. At higher water contents clustering begins, but the water in the zeolite cavities always has a much lower temperature of fusion and heat of fusion than bulk water. Heats of fusion of internal and external water are given. Values of apparent specific heat of sorbed water are calculated, and shown to be consistent with the nature of sorbed water deduced from the fusion behaviour.  相似文献   

15.
Convey P  Worland MR 《Cryo letters》2000,21(6):327-332
Free-living microbivorous nematodes become numerically dominant in Antarctic terrestrial faunas as environmental conditions become more severe, while also reaching very high levels of abundance in moist, vegetated habitats. Nematodes have little resistance to freezing via exogenous ice nucleation, such as would occur as their microhabitat freezes. We report the results of experiments testing the ability of seven maritime Antarctic nematode taxa to survive freezing in small water droplets at high sub-zero temperatures. Isolated individuals of these species possessed supercooling characteristics similar to those previously reported (supercooling points -6 to -25 degree C). When frozen in water at -3 to -6 degree C, most showed high (> 70%) survival both (i) after rapid cooling (1 degree C/min) to c. -60 degree C followed by immediate rewarming, and (ii) when held for 7-12 h at either -10 or -30 degree C, although the proportions surviving varied between species. We propose that the ability to survive freezing while fully hydrated at high sub-zero temperatures is one of the most important aspects of these species' survival tactics.  相似文献   

16.
Human serum albumin has been studied at low hydration level by the ESR spin labelling technique, under the assumption that a covalently bound spin-label is a reporter of the protein internal dynamics. At room temperature, the presence of a double component signal allowed us to monitor the influence of increasing hydration level on internal protein dynamics as well as on the superficial water dynamics. The ESR results have shown that the first 20 g of water per 100 g of protein activate the internal protein dynamics and that superficial water dynamics starts at higher hydration values. ESR experiments at low temperature have shown that at ?160°C ?T??80°C, the label experiences an increasing environmental polarity with increasing temperature in the samples with hydration values higher than about 20 g of water per 100 g of protein. The results are discussed in connection with both conformational substates of the protein and hydration water dynamics.  相似文献   

17.
Broad-band dielectric spectroscopy is used to investigate the dynamics of hydration water on the surface of the cylindrical pores of a nanostructured silica material (MCM-41, with pore diameter of 3.2 nm) at various hydrations, in the temperature range 250-150 K. We focus our attention on orientational relaxations that shift from 0.5 MHz at 250 K to less than 1 Hz at 150 K. The measurements distinguish the relaxation of the hydroxyl groups at the surface of silica from the orientational dynamics of hydration water which strongly depends on the degree of hydration. Although it is significantly faster than the dynamics of water in ice, the orientational relaxation of non-freezing water has an activation energy comparable to that in ice when the hydration layer is complete and approximately two-molecule thick.  相似文献   

18.
This study investigated the survival of seeds from the prominent endemic Western Australian species Anigozanthos manglesii following exposure to liquid nitrogen (cryostorage). Seeds from four different accessions (collected in 1987, 1990, 1993 and 1998) adjusted to different water contents were tested for survival following cryostorage. Water content was a significant determining factor with survival of cryostored seeds declining rapidly at water contents above c. 18%. These water contents were deemed as critical water contents and were supported by DSC scans showing high endothermic peaks indicating ice crystallisation. In some instances, survival of cryostored seeds also declined at low water contents. Seeds from 1990 had a lower than expected survival compared to the other accessions. This may have resulted from the higher lipid content of seeds from this accession, or the reduced germination and vigour of these seeds prior to cryostorage.  相似文献   

19.
The low-frequency modes of protein hydration water are investigated by inelastic neutron scattering. Experiments on both protonated and fully deuterated maltose binding protein samples allow us to unambiguously single out the contribution from water. The low-energy vibrational density of states of hydration water at 100 K is similar to the density of states of high- and low-density amorphous ice, and quite different from that of simple forms of crystalline ice. This result can be related to the picture of hydration water mass density depending on the protein surface curvature, which supports its glassy behavior.  相似文献   

20.
The detection of a buried surrogate land mine is investigated by use of a pulsed thermographic method driven by a high powered infrared heater. In this experimental and analytical investigation, the surface of the sand is initially heated by infrared lamps and is then cooled by natural convection, and during this second phase a dry layer of sand develops on the surface. The temperature distribution of the dry sand surface is influenced by the presence of the buried mine.

The experimental investigation was performed in a laboratory where a surrogate mine was buried at depths between 1 cm and 4 cm in dry sand, and sand which had initial water contents of 2.5%, 5% and 10%. The results show that an observable ‘hot spot’ develops on the sand surface above the mine, during the cooling phase of most tests. The water content of the sand was found to have a strong influence on the development of the hot spot. The surface temperature variation for dry sand tends to be less than that found for sands that contain water and the only test where the hot spot was not detected was in dry sand where the mine was buried at 4 cm. A one-dimensional finite difference model was used to describe the heat and mass transfer mechanisms and interpret the experimental results.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号