首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A storage protocol at cryogenic temperature was established for shoot apices from in vitro plants of the cultivated groundnut (Arachis hypogaea) and wild Arachis species (A. retusa and A. burchellii) using a basic vitrification protocol with direct immersion in liquid nitrogen (LN). The effect of pre-treatments of donor-plants with ABA as well as of different supplements in the post-thaw culture medium was studied. After rapid warming at 40 C, the explants were cultured on MS medium devoid of growth regulators (MS0) or MS supplemented with 4.4(M benzylaminopurine (BAP) and 0.5(M naphthalene acetic acid (NAA) plus 5(M silver nitrate (AgNO3), 0.25% polyvinylpyrrolidone (PVP) or 0.2% activated charcoal. Non-frozen explants from the three species formed one shoot through meristematic amplification when cultured on MS0 medium. These explants also developed callus on MS supplemented with growth regulators (4.4(M BAP and 0.5(M NAA) alone or plus PVP or AgNO3. Callus formation was suppressed in the presence of activated charcoal. Post-thaw regeneration ocurred only through indirect organogenesis on media containing AgNO3 or PVP. Preculturing on medium supplemented with abscisic acid (ABA) improved regrowth rate in these media. Recovery failed to occur in the presence of activated charcoal. The genetic stability of shoots of A. burchellii originated from shoot apices was analyzed through Random Amplified Polymorphic DNA (RAPD) markers.  相似文献   

2.
In vitro shoot apices of black chokeberry (Aronia melanocarpa Elliott) were successfully cryopreserved utilizing three methods, namely vitrification, encapsulation-vitrification and encapsulation-dehydration. Encapsulation-dehydration and encapsulation-vitrification, however, seem preferable to vitrification, since the highest respective survival levels of apices (71.1 +/- 2.2 percent and 77.8 +/- 4.4 percent) by both methods were higher than that (60.0 +/- 3.9 percent) by vitrification. In encapsulation-dehydration, the highest survival was achieved when the moisture content of beads was reduced to 19 percent by drying with silica gel for 6 h. In the present study, it was shown that adding 1.0 M glycerol to beads and loading solution during encapsulation-dehydration resulted in high survival (91.7 - 95.0 percent) regardless of lines and polyploids of black chokeberry.  相似文献   

3.
Shoot tips of cassava (Manihot esculenta Crantz) in vitro plantlets were successfully cryopreserved using the encapsulation-vitrification technique. Nodal cuttings of 5 mm length with one leaf were cultured on modified MS medium in Petri dishes (90 mm x 20 mm) for about 28 days. Excised shoot tips were precultured on sucrose enriched (0.3 M) medium for 16 h, encapsulated and osmoprotected with a mixture of 2 M glycerol and 0.6 M sucrose for 90 min at 25 degree c before dehydration with PVS2 at 0 degree C for 4 h, then plunged in liquid nitrogen. Successfully vitrified shoot tips resumed growth within 3 days, without intermediary callus formation, and developed shoots. Shoot tips sampled from 21 day-old plantlets produced the highest survival of 80 %. The percentage survival of vitrified shoot tips differed from 38 to 80 % depending on the day of excision. The protocol was successfully applied to four cultivars of cassava with about 80 % average percentage of survival.  相似文献   

4.
Oca (Oxalis tuberosa Mol.) is an under-utilized tuber crop from the Andean region. Cryopreservation would allow the safe and long-term preservation of the genetic resources of this crop. A protocol for the cryopreservation of in vitro grown shoots has been developed using the vitrification solution PVS2. Two genotypes were studied (G1 and G27). Nodal segments were cultured on MS medium and incubated at 10 degree C with 16 h photoperiod and 10 mol per square meter per second irradiance, for two weeks. Apices were then excised and cultured on MS+0.15 M sucrose for 3 days at 5 degree C in darkness. Subsequently, apices were immersed in a loading solution (liquid MS medium+2 M glycerol+0.4 M sucrose), and then treated with the vitrification solution PVS2 for 0 to 40 minutes. Cryovials were then immersed in liquid nitrogen. Four weeks after rewarming and culture on recovery medium, genotype G1 showed approximately 60 percent recovery (normal growth) with 20 min PVS2 treatment. Genotype G27 showed lower recovery (30 percent). Differential scanning calorimetry yielded a Tg midpoint for PSV2 solution of ca. -120 degree C. Calorimetric studies on apices at different stages of the cryopreservation protocol showed a change in calorimetric parameters consistent with a decrease in the amount of frozen water as the protocol advanced.  相似文献   

5.
Gupta S  Reed BM 《Cryo letters》2006,27(1):29-42
Encapsulation-dehydration and PVS2-vitrification cryopreservation protocols were evaluated for the long-term conservation of a diverse group of Rubus germplasm. Cold acclimation for a 4-week period prior to cryopreservation was necessary for regrowth of shoot apices from blackberry and raspberry genotypes. For the encapsulation-dehydration protocol, encapsulated apices were pretreated in 0.75 M sucrose for 20 h, desiccated 6-h under laminar flow to c. 20 percent moisture content, then plunged in liquid nitrogen (LN) and rapidly warmed. The PVS2-vitrification protocol included pretreating shoot tips on 5 percent dimethyl sulfoxide (DMSO) medium for 48 h, exposure to loading solution (LS) and PVS2 for 20 min each at 25 degree C , followed by immersion in LN and rapid warming. Shoot tips of 25 genotypes in 9 Rubus species and 9 Rubus hybrids were successfully cryopreserved with recovery of 60 to 100 percent using the encapsulation-dehydration protocol. Four genotypes of 3 species were tested using the vitrification protocol with 71 percent average regrowth. The present results indicate that both of these improved cryopreservation protocols can be applied to a diverse range of Rubus genetic resources.  相似文献   

6.
Baek HJ  Kim HH  Cho EG  Chae YA  Engelmann F 《Cryo letters》2003,24(6):381-388
This paper investigates the effect of the origin and size of the explants employed and of the preconditioning (cold acclimation, preculture) and loading treatments on survival and regeneration of cryopreserved garlic shoot apices using vitrification with the PVS3 vitrification solution. Both the origin and size of explants had a significant effect on regeneration of cryopreserved apices. Higher regeneration was generally observed with apices excised from bulbs and bulbils, followed by cloves, and those originated from larger propagules regrew more rapidly. Smaller apices (1.5 or 3.0 mm in diameter) displayed higher regeneration than large ones (4.5 mm in diameter). Cold acclimation at 5 degree C of apices before freezing had no positive effect on regeneration after cryopreservation. Preculture of apices at 10 or 23 degree C for more than 3 days had a detrimental effect on regeneration. The optimal sucrose concentration in the preculture medium was 0.3-0.5 M. Loading apices for 30 or 60 min at 23 degree C in medium containing 2 M glycerol + 0.4 M sucrose or 1 M glycerol + 0.8 M sucrose had no effect on regeneration after cryopreservation, in comparison with apices cryopreserved without loading treatment. Under optimal conditions, regeneration of cryopreserved apices sampled from large cloves was above 90 percent.  相似文献   

7.
This paper investigates the effect of dehydration, rewarming, unloading and regrowth conditions and of bulb post-harvest storage duration on survival and regeneration of cryopreserved garlic shoot tips. PVS3 was the most effective of the seven vitrification solutions compared. Treating shoot tips with PVS3 for 150-180 min ensured 92 % regeneration after freezing. An air-drying treatment, performed either before or after the PVS3 treatment, was detrimental to regeneration of cryopreserved shoot tips. Rapid rewarming in a water-bath at 37 degree C gave higher regeneration than the slower rewarming procedures employed. Regeneration was similar using either sucrose or sorbitol unloading solutions. The growth regulator content of the recovery medium did not influence percentage regeneration. However, the fresh weight of explants cultured on medium containing 0.3 mg/L zeatin and 0.3 mg/L gibberellic acid was significantly higher than on other media. Post-harvest storage duration of bulbs dramatically influenced survival and regeneration of non-cryopreserved and cryopreserved shoot tips, which were nil for samples cryopreserved immediately after harvest and highest after 3 and 6 months of storage. The optimized cryopreservation protocol was applied to ten different garlic varieties, with regeneration percentages ranging between 72 and 95 %.  相似文献   

8.
Accessions of Mentha x piperita, M. x villosa, and M. spicata were evaluated for regrowth after cooling in liquid nitrogen using shoot tips from in-vitro grown plantlets and a simple vitrification protocol with aluminium foil as a carrier. The influences of plant preculture, loading solution and loading time and of the effects of the cryoprotectant PVS 2 on plant re-growth after re-warming were investigated. Nodal segments were cultivated at constant temperatures of 20 or 25 degree C or in alternating temperature regimes (25/15C or 25/-1C). The illumination was always 16 h per day. The re-growth levels after re-warming were significantly higher in plants pre-cultured at 25/-1C regime than in plants cultivated at 20C or 25C or at 25/15C regime for all nine tested accessions. The mean re-growth levels increased from 36 percent at 20C to 69percent at alternating temperatures, respectively. The maximum of plant re-growth after re-warming was 89 percent. A pre-culture at alternating temperatures of 25/15C did not increase the recovery of plants. Loading in sucrose solutions with different dehydration capacities did not alter the plant re-growth. Differences in the loading time between 20 min and 2 h were not important for re-growth either. No significant differences were found between freezing without and with PVS 2 droplets on the aluminium foil. Re-grown shoots rooted easily on the re-growth medium and plantlets were successfully transferred to soil.  相似文献   

9.
In this paper, we studied the effect of subculture of mother-plants and of preculture of shoot tips of two potato varieties (Dejima, cultivated and STN13, wild) cryopreserved using the droplet-vitrification technique. The subculture conditions (light intensity, aeration and planting density) significantly affected survival of both non-cryopreserved and cryopreserved shoot-tips in both varieties. The subculture duration and the position of the shoot tips on the axis of the in vitro plantlets had a significant (P<0.0001) effect on survival of cryopreserved shoot tips. The optimal subculture duration was 7 and 5 weeks and the optimal size of shoot tips was 1.5-2.0 and 1.0-1.5 mm for var. Dejima and STN13, respectively. Survival of cryopreserved shoot tips was influenced by the sucrose concentration in the preculture medium and the preculture duration. The highest survival of cryopreserved shoot tips was observed after preculture with 0.3 M sucrose for 8 h followed by 0.7 M sucrose for 18 h. These results indicate that the parameters of the subculture of mother-plants and of preculture of shoot tips should be carefully optimized, especially in the case of wild species.  相似文献   

10.
Niu YL  Luo ZR  Zhang YF  Zhang QL 《Cryo letters》2012,33(1):69-74
The objective of this study was to compare the potential of different cryopreservation strategies for in vitro shoot tips of Diospyros kaki Thunb. The treatments consisted of three different cryopreservation methods: vitrification, droplet-vitrification and modified droplet-vitrification. The following variables were assessed: cold acclimation, sucrose concentration in the preculture medium and PVS2 treatment time. A higher average survival level was obtained using the modified droplet-vitrification method compared to the other two methods.  相似文献   

11.
We succeeded in cryopreserving of innala (Solenostemon rotundifolius) in vitro-grown young lateral buds by vitrification. Nodal segments from in vitro-grown shoots (2-4 mm in length) were cultured on MS medium containing 0.1M sucrose in Petri dishes for 3 weeks under 16-h photoperiod at 25 degree C. This pre-growth induced a large number of uniform young lateral buds. Nodal segments (0.5 to 1.0 mm in length) with two lateral buds were dissected from the shoots and precultured with 0.3 M sucrose for 2 days at 25 degree C. They were then treated with loading solution containing 2 M glycerol and 0.4 M sucrose (LS solution) for 20 min at 25 degree C and dehydrated with the PVS2 vitrification solution for 18 min at 25(C prior to either rapid immersion in liquid nitrogen. Surviving lateral buds resumed growth within 3 days and developed shoots without intermediary callus formation. The average growth recovery after cryopreservation amounted to 85%.  相似文献   

12.
Cho EG  Hor YL  Kim HH  Rao VR  Engelmann F 《Cryo letters》2002,23(5):317-324
This paper investigates the importance of loading and treatment with a vitrification solution on the survival of Citrus madurensis embryonic axes cryopreserved using a vitrification protocol. Among the seven different loading solutions tested, the solution containing 2 M glycerol + 0.4 M sucrose was the most efficient. Of the six vitrification solutions tested, the PVS2 vitrification solution, applied for 20 min at 25 degree C or for 60 min at 0 degree C, ensured the highest survival. A three-step vitrification protocol, involving the treatment of embryonic axes at 0 degree C with half strength PVS2 solution for 20 min then with full strength PVS2 for an additional 40 min was more efficient than a two-step protocol that involved treatment of axes directly with full strength PVS2 solution for 60 min. After rapid immersion in liquid nitrogen, rapid rewarming, unloading in a 1.2 M sucrose solution for 20 min, culture on solid medium with 0.3 M sucrose for 1 day and growth recovery for 4 weeks on standard medium, survival of C. madurensis embryonic axes reached 85 % following the three-step process, compared with 70 % for the two-step process.  相似文献   

13.
Sharma N  Sharma B 《Cryo letters》2003,24(3):181-190
The cryopreservation of shoot tips of Picrorhiza kurroa Royle ex Benth (IC 266698), an endangered medicinal plant of India was investigated. Shoot tips (about 1 mm in length) excised from four-week-old proliferating shoot cultures were precultured on MS medium supplemented with various osmotica before dehydrating with PVS2 solution at 0 degrees C. The dehydrated shoot tips were directly immersed in LN2. Following cryopreservation, and after rapid rewarming at 45 degrees C, shoot tips were quickly washed with 1.2 M sucrose solution and then plated on solidified shoot culture medium. Shoot tips were successfully cryopreserved by vitrification, when they were precultured on medium supplemented with 5% DMSO at 4 degrees C for two days before dehydrating in PVS2 for 10-20 minutes at 0 degrees C. Average survival in terms of normal shoot formation after 4 wks of plating was about 20% without callus formation. Cold hardening of shoot cultures for four weeks at 4 degrees C significantly improved the survival and shoot regeneration of cryopreserved shoot tips to 70% and 35%, respectively.  相似文献   

14.
Olive (Olea europea L.) somatic embryos were successfully cryopreserved using encapsulation-dehydration and encapsulation-vitrification. In the encapsulation-dehydration procedure, a maximum of 48% embryo survival was obtained when bead moisture content was decreased to 21.1% after 4 h dehydration. Preculture of embryos for 4 d in medium containing 0.75 to 1.25 M sucrose produced higher (40 to 34 %, respectively) regrowth after cryopreservation using encapsulation-dehydration procedure. Dehydration of beads for 3 h in PVS2 ensured higher survival (64%) of encapsulated-vitrified and cryopreserved (EVN) somatic embryos. Thermal treatment of embryogenic callus for 1 d at 30 degree C was very effective to increase survival of encapsulated-dehydrated and cryopreserved (EDN) (58%) and EVN (68%) embryos. Plantlets produced from control and cryopreserved embryos were phenotypically similar.  相似文献   

15.
Gale S  John A  Harding K  Benson EE 《Cryo letters》2008,29(2):135-144
Two vitrification-based cryopreservation protocols, encapsulation/dehydration and PVS2 were applied to Stage 2 (globular) and Stage 4 (torpedo) somatic embryos (SE) from Picea sitchensis. Two recovery responses: partially differentiated embryogenic suspensor masses (ESM) and dedifferentiated non-embryogenic masses (NEM) were observed following exposure to LN. All genotypes tested, proliferated NEM, approximately 10 to 100% of the total SE cryopreserved. A General Linear Model applied to NEM recovery data demonstrated several different factors (developmental state and genotype, treatment, culture age) interacted at a significant level (P less than 0.05) to influence proliferation. One genotype was capable of proliferating ESM after cryopreservation using encapsulation-dehydration, this response was achieved for Stage 4 embryos derived from the youngest ESM tissue.  相似文献   

16.
We compared cryopreservation of mammalian neural stem cells (NSCs) cultured as neurospheres by slow-cooling (1 C/min) in 10% (v/v) DMSO and cryopreservation by immersion into liquid nitrogen in ethylene glycol (EG)-sucrose solutions that support vitrification (40% (v/v) EG, 0.6 M sucrose) or that do not (37% v/v) EG, 0.6 M sucrose and 30% (v/v) EG, 0.6 M sucrose); the concentration of penetrating cryoprotectant in the last two solutions was lowered with the intention to reduce their toxicity towards NSCs. To protect against contamination a straw-in-straw technique was employed. Vitrification offered the best combination of preservation of structural integrity of neurospheres, cell viability (>96%), multipotency and karyotype. Rapid cooling in 37% (v/v) EG, 0.6 M sucrose afforded good viability but did not preserve structural integrity. Rapid cooling in 30% (v/v) EG, 0.6 M sucrose additionally reduced cell viability to 77%. Slow-cooling reduced cell viability to 65% and damaged the neurospheres. This study suggests that, in contrast to freezing, vitrification has immense potential for the cryopreservation of stem cells cultured as neurospheres or in other structured cultures.  相似文献   

17.
Kim HH  Yoon JW  P YE  Cho EG  Sohn JK  Kim TK  Engelmann F 《Cryo letters》2006,27(4):223-234
The applicability of cryopreservation protocols to a broad range of genotypes is a key issue for genebanks. We tried to identify the critical factors causing differences in survival of cryopreserved shoot tips using potato varieties coming from cultivated and wild species. The droplet-vitrification method, a combination of droplet-freezing and solution-based vitrification, was selected from several protocols. High survival after freezing was observed after dehydration with PVS2 for 20 min, cooling shoot tips placed in a droplet of PVS2 solution on aluminum foil strips by immersing the foil strips in liquid nitrogen, warming them by plunging the foil strips into a 0.8 M sucrose solution (at 40 degrees C) for 30 s and unloading in 0.8 M sucrose for 30 min. This optimized protocol was successfully applied to 12 accessions with survival ranging between 64.0 and 94.4%.  相似文献   

18.
Wang ZC  Deng XX 《Cryo letters》2004,25(1):43-50
A commercial citrus scion cultivar, '439' tangor [C. Suavissima Hort. et Tanaka x C. sinensis (L.) Osbesk cv.Gailiangcheng] was used to investigate whether GSH (reduced form of glutathione) could improve survival of a vitrification procedure. The optimal pre-growth treatment was a 3-day pre-culture on basal pre-culture medium (BPM: MT basal medium containing 0.5 mol/L glycerol and 5 % sucrose at pH 5.8). GSH of 40 mg/L in the pre-culture medium improved shoot tip survival after cryopreservation. GSH in the recovery medium also improved survival, with 10 mg/L giving the best result. GSH of 40 mg/L in the loading and vitrification solutions also improved survival. The optimal cryopreservation protocol was successfully applied to 12 other citrus cultivars. This is the first report on the successful cryopreservation of shoot-tips from commercial citrus scion cultivars.  相似文献   

19.
The effects of two methods of cryopreservation involving chemical vitrification and air desiccation) were studied on isolated embryonic axes of A. hypogaea. Vitrification with PVS2 and desiccation in a laminar flow cabinet resulted in high levels (70-90%) of whole plant recovery after cryopreservation. A desiccation protocol based on 1h exposure of explants to the air flow was successfully applied to six wild species of section Extranervosae, resulting in recovery levels of 70-90% after liquid nitrogen treatment.  相似文献   

20.
Cryopreservation of yams (Dioscorea spp.) is important for the preservation of valuable genotypes for food, medicine and breeding purposes. This study on four species of yams was conducted to evaluate the influence of cold acclimation in an alternating 5 degree C and 28 degree C, 12 h thermo-photo-period and of two sucrose concentrations in the preculture medium using a modified droplet method. Acclimation of a 3-week period provided the best preconditioning treatment averaged over four genotypes. Effect of sucrose concentration in the preculture medium depended on the genotype (significant genotype x sucrose interaction; P = 0.036). High survival (67 to 70%) with 30% to 50% shoot recovery was obtained for D. bulbifera, D. polystachya and D. cayenensis, compared to 20 percent survival without shoot recovery for D. alata.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号