首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
A tandem ion mobility spectrometer with two sequential differential mobility spectrometry (DMS) drift tubes and with detectors at ambient pressure is described and modes of operation are demonstrated. Separate but coordinated electronic control for each drift tube allows several modes of operation including: all ions passing; compensation voltage (CV) scanning; and ion selection over a narrow CV range. Any of these modes can be applied to each drift tube allowing several combinations of analytical measurements, analogous to tandem mass spectrometry, with ions entered into a gas atmosphere containing reagents between the mobility regions. Ions may be changed by cluster or displacement reactions and characterized in the second DMS analyzer. Proton bound dimers of compounds appearing near 0?V CV in DMS1 were isolated in DMS1, introduced into 1?% isopropanol vapors, and resolved at characteristic CV values in the DMS2. This is achieved with analyzer dimensions little greater than a single DMS instrument.  相似文献   

2.
A program for Monte Carlo simulation of ion transport in non-linear ion mobility spectrometry, also known as field asymmetric ion mobility spectrometry (FAIMS) or differential mobility spectrometry (DMS), has been developed. Simulations are based on elastic collisions between the ions and the gas particles, and take into account the effects of flow dynamics and asymmetric electric fields. Using this program, the separation and diffusion of the ions moving in a planar DMS filtration gap are demonstrated. Ion focusing in a cylindrical filtration gap is also confirmed. A characteristic compensation voltage is found to provide insight for understanding separation in non-linear ion mobility spectrometry. The simulation program is used to study the characteristics of non-linear ion mobility spectrometry, the effect of the carrier gas flow, and the dependence of the compensation voltage and nonlinear mobility coefficient (α) on the applied asymmetric electric field.  相似文献   

3.
Mixtures of n-alkanethiols, in solution with equi-molar amounts from 0.5 to 360 ng per compound, were determined using gas chromatography (GC) with a differential mobility spectrometer, operated with a flow of air at ambient pressure, as the GC detector. A homologous series of n-alkanethiols with carbon number from two to six showed baseline resolution in the GC separation and positive and negative ion chromatograms were produced simultaneously for the alkanethiols. Differential mobility spectra showed compensation voltages characteristic of each alkanethiol and plots of ion intensity, retention time, and compensation voltage yield contour plots illustrating the second dimension of analytical selectivity provided by the detector. Another yet undeveloped dimension of analytical information was found in the dependence of mobility coefficients on electric field. Mass-analysis of ions from thiols showed a hydrogen abstracted ion, protonated monomers, and proton bound dimers. Linear ranges were narrow and the minimum detectable limits were ~1 ng. Response in positive polarity provided a ten-fold improvement in detection limits though spectra were more complex than for negative ions. In a methane-rich air atmosphere, intended to simulate ambient air or the detection of leaks from natural gas pipelines, the response to thiols with negative ions was not degraded by the methane up to 50% v/v, the highest level tested.  相似文献   

4.
The ionization pathways and ion mobility were determined for sets of structural isomeric and stereoisomeric non-polar hydrocarbons (saturated and unsaturated cyclic hydrocarbons and aromatic hydrocarbons) using a novel miniature differential mobility spectrometer with atmospheric-pressure photoionization (APPI) to assess how structural and stereochemical differences influence ion formation and ion mobility. The analytical results obtained using the differential mobility spectrometry (DMS) were compared with the reduced mobility values measured using conventional time-of-flight ion mobility spectrometry (IMS) with the same ionization technique.The majority of differences in DMS ion mobility spectra observed among isomeric cyclic hydrocarbons can be explained by the formation of different product ions. Comparable differences in ion formation were also observed using conventional IMS and by investigations using the coupling of ion mobility spectrometry with mass spectrometry (APPI-IMS-MS) and APPI-MS. Using DMS, isomeric aromatic hydrocarbons can in the majority of cases be distinguished by the different behavior of product ions in the strong asymmetric radio frequency (rf) electric field of the drift channel. The different peak position of product ions depending on the electric field amplitude permits the differentiation between most of the investigated isomeric aromatics with a different constitution; this stands in contrast to conventional IMS in which comparable reduced mobility values were detected for the isomeric aromatic compounds.  相似文献   

5.
Ion mobility spectrometry has become the most successful and widely used technology for the detection of trace levels of nitro-organic explosives on handbags and carry on-luggage in airports throughout the US. The low detection limits are provided by the efficient ionization process, namely, atmospheric pressure chemical ionization (APCI) reactions in negative polarity. An additional level of confidence in a measurement is imparted by characterization of ions for mobilities in weak electric fields of a drift tube at ambient pressure. Findings from over 30 years of investigations into IMS response to these explosives have been collected and assessed to allow a comprehensive view of the APCI reactions characteristic of nitro-organic explosives. Also, the drift tube conditions needed to obtain particular mobility spectra have been summarized. During the past decade, improvements have occurred in IMS on the understanding of reagent gas chemistries, the influence of temperature on ion stability, and sampling methods. In addition, commercial instruments have been refined to provide fast and reliable measurements for on-site detection of explosives. The gas phase ion chemistry of most explosives is mediated by the fragile CONO(2) bonds or the acidity of protons. Thus, M(-) or M.Cl(-) species are found with only a few explosives and loss of NO(2), NO(3) and proton abstraction reactions are common and complicating pathways. However, once ions are formed, they appear to have stabilities on time scales equal to or longer than ion drift times from 5-20 ms. As such, peak shapes in IMS are suitable for high selectivity and sensitivity.  相似文献   

6.
A program for simulation of ion trajectories in ion mobility spectrometry (IMS) instruments has been developed and incorporated into SIMION 7.0 [Int. J. Mass Spectrom. 200 (2000) 3–25]. Simulations were based on elastic collisions between ions and gas particles and conducted for an IMS drift tube. The program was validated by comparing the reduced mobility of helium ions derived from the simulation with the experimental data for helium ions in neon drift gas in low electric fields. Typical IMS parameters, including pressure, temperature, and flow rate of the drift gas were taken into account in the simulations. The program demonstrates capabilities of generating IMS spectra and predicting ion transport efficiency and separating ions. For the IMS drift tube studied, a correlation between imperfection of the electric field distribution and low resolution has been observed.  相似文献   

7.
Ion mobility spectra for ten alcohols have been studied in an ion mobility spectrometry apparatus equipped with a corona discharge ionization source. Using protonated water cluster ions as the reactant ions and clean air as the drift gas, the alcohols exhibit different product ion characteristic peaks in their ion mobility spectra. The detection limit for these alcohols is at low concentration pmol/L level according to the concentration calibration by exponential dilution method. Based on the measured ion mobilities, several chemical physics parameters of the ion-molecular interaction at atmosphere were obtained, including the ionic collision cross sections, diffusion coefficients, collision rate constants, and the ionic radii under the hard-sphere model approximation.  相似文献   

8.
A new and fast method for measuring the diffusion coefficients of binary gas mixtures using ion mobility spectrometry (IMS) has been developed. In this method, the sample is injected as a short pulse into the flowing drift gas, forming a Gaussian concentration profile inside the drift region. This Gaussian cloud is irradiated with a fast moving swarm of electrons to create negative ions. The flash of electrons is so short that the negative ions do not move much during the exposure time. The ions then drift toward the detector, where they are collected. The collected ion signal pattern reflects the spatial distribution of the sample inside the cloud at the time of exposure. This is repeated in intervals of 300-400 ms to monitor the spatial spreading of the molecules in the drift region. Consecutive IMS spectra show the evolution of the cloud over time. The collected spectra are fit to Gaussian functions to extract diffusion coefficients. Using this method, the diffusion coefficient of O(2), CHCl(3), and C(2)H(2)Cl(2) were measured, and the results are in good agreement with the previously reported experimental data.  相似文献   

9.
Ion mobility spectrometry detection for gas chromatography   总被引:2,自引:0,他引:2  
The hyphenated analytical method in which ion mobility spectrometry (IMS) is coupled to gas chromatography (GC) provides a versatile alternative for the sensitive and selective detection of compounds after chromatographic separation. Providing compound selectivity by measuring unique gas phase mobilities of characteristic analyte ions, the separation and detection process of gas chromatography-ion mobility spectrometry (GC-IMS) can be divided into five individual steps: sample introduction, compound separation, ion generation, ion separation and ion detection. The significant advantage of a GC-IMS detection is that the resulting interface can be tuned to monitor drift times/ion mobilities (as a mass spectrometer (MS) can be tuned to monitor ion masses) of interest, thereby tailoring response characteristics to fit the need of a given separation problem. Because IMS separates ions based on mobilities rather than mass, selective detection among compounds of the same mass but different structures are possible. The most successful application of GC-IMS to date has been in the international space station. With the introduction of two-dimensional gas chromatography (2D-GC), and a second type of mobility detector, namely differential mobility spectrometry (DMS), GC prior to mobility measurements can now produce four-dimensional analytical information. Complex mixtures in difficult matrices can now be analyzed. This review article is intended to provide an overview of the GC-IMS/DMS technique, recent developments, significant applications, and future directions of the technique.  相似文献   

10.
High field asymmetric wave ion mobility spectrometry (FAIMS) is a powerful tool to detect and characterize gas-phase ions, while the unsolvable partial differential equation of ions moving in ion drift tube poses a big challenge to FAIMS spectral peak analysis. In this work, a universal and effective model of FAIMS spectral peak profile has been proposed by introducing ion trajectory and loss height. With this model, the influence of the structure of ion drift tube, dispersion voltages, compensation voltages, and carrier gas flow rate on the FAIMS spectral peak characteristics like peak shape, full width at half maximum and peak height is analyzed and discussed. The results show that the influence of different factors on the FAIMS spectral peak profile can be qualitatively described by the model which agrees with the experimental data.  相似文献   

11.
A microfabricated electromechanical system based on radio frequency modulated ion mobility spectrometry (MEMS-RFIMS), also known as differential ion mobility spectrometry (DMS) has been successfully interfaced to a custom-fabricated resistively heated temperature programmable micromachined gas chromatograph. In contrast to a conventional time-of-flight ion mobility spectrometer, the DMS uses the non-linear mobility dependence in strong radio frequency electric fields for ion filtering. Selective and sensitive detection of targeted analytes of interest can be achieved by using different transport gases, radio frequencies, and associated compensation voltages. In addition, the detection of both positive and negative ions, depending on the ionization mechanism favorable to the analytes involved is achieved. When compared to a stand-alone GC with a non spectrometric detector or a stand-alone DMS, GC-DMS as a hyphenated technique offers two competitive advantages; two orthogonal separating methods in a single analytical system and the resolving power of gas chromatography to minimize charge exchange in the ionization chamber of the detector. In this article, a portable, resistively heated temperature programmable silicon machined gas chromatograph with differential mobility detection is introduced. The performance of the instrument is illustrated with examples of difficult industrial applications.  相似文献   

12.
H. Borsdorf  E.G. Nazarov 《Talanta》2007,71(4):1804-1812
The ion mobilities of halogenated aromatics which are of interest in environmental chemistry and process monitoring were characterized with field-deployable ion mobility spectrometers and differential mobility spectrometers. The dependence of mobility of gas-phase ions formed by atmospheric-pressure photoionization (APPI) on the electric field was determined for a number of structural isomers. The structure of the product ions formed was identified by investigations using the coupling of ion mobility spectrometry with mass spectrometry (APPI-IMS-MS) and APPI-MS. In contrast to conventional time-of-flight ion mobility spectrometry (IMS) with constant linear voltage gradients in drift tubes, differential mobility spectrometry (DMS) employs the field dependence of ion mobility. Depending on the position of substituents, differences in field dependence were established for the isomeric compounds in contrast to conventional IMS in which comparable reduced mobility values were detected for the isomers investigated. These findings permit the differentiation between most of the investigated isomeric aromatics with a different constitution using DMS.  相似文献   

13.
Characterization of ions from eight explosives (2,4,6-trinitrotoluene, pentaerythritol tetranitrate, 2,4,6-trinitrophenol, 2,4-dinitrotoluene, erythritol tetranitrate, hexamethylene triperoxide diamine, 2,4,6-trinitrophenylmethylnitramine and 1,3,5-trinitro-perhydro-1,3,5-triazine) using differential mobility spectrometry (DMS) with 63Ni as an ionization source was performed. Presented results of explosive analysis have been evaluated by use of special software tool which communicates with DMS in real time. This tool was developed for visualization, identification and comparison of measured data. Each explosive provides characteristic signal at a specific compensation voltage under a fixed dispersion field. Peaks in DMS spectra for these ions were confined to a range of compensation voltages between ?1.61 to +1.71 V at RF = 1060 V. We calculated specific alpha coefficients (α2 and α4) to obtain a nonlinear function of explosives, based on their DMS spectra. Dependence of mobility for measured explosives ions in electric field at E/N values between 0 to 120 Td were used to inspectional graphical differentiation of explosives.  相似文献   

14.
Gas phase ions for valine, glutamate, phenylalanine, angiotensin, bradykinin, LH-RH, and bombesin were formed through matrix assisted laser desorption-ionization (MALDI) in air at ambient pressure and were characterized by ion mobility spectrometry (IMS). The IMS drift tube was operated at 100 °C with air as the drift gas and without an ion shutter. Responses were obtained using α-cyano-4-hydroxycinnamic acid as the matrix and a Nd-YAG laser at 355 nm with an unfocused beam at 6 mJ per pulse and 7 mm2 cross section. Matrix and analyte were applied to a borosilicate glass target and microgram amounts of sample provided responses lasting 10 to 15 s with the laser operated at 11 Hz. Detection limits for the peptides were estimated to be 10 to 100 pmol per laser shot. The mobility spectra for individual amino acids and peptides exhibited multiple peaks with spectral distortions and raised baselines. These features and calculated values for reduced mobilities were consistent with the existence of clusters between analyte ions and matrix neutrals and the dissociation of these clusters in the drift region of the analyzer. Mobility spectra with distinctive peaks were not obtained for MALDI-IMS of peptides larger than 5700 amu, though ion formation was suggested from the depletion of matrix signal.  相似文献   

15.
Four bacteria, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus warneri, and Micrococcus luteus, were grown at temperatures of 23, 30, and 37 degrees C and were characterized by pyrolysis-gas chromatography/differential mobility spectrometry (Py-GC/DMS) providing, with replicates, 120 data sets of retention time, compensation voltage, and ion intensity, each for negative and positive polarity. Principal component analysis (PCA) for 96 of these data sets exhibited clusters by temperature of culture growth and not by genus. Analysis of variance was used to isolate the constituents with dependences on growth temperature. When these were subtracted from the data sets, Fisher ratios with PCA resulted in four clusters according to genus at all temperatures for ions in each polarity. Comparable results were obtained from unsupervised PCA with 24 of the original data sets. The ions with taxonomic features were reconstructed into 3D plots of retention time, compensation voltage, and Fisher ratio and were matched, through GC-mass spectrometry (MS), with chemical standards attributed to the thermal decomposition of proteins and lipid A. Results for negative ions provided simpler data sets than from positive ions, as anticipated from selectivity of gas phase ion-molecule reactions in air at ambient pressure.  相似文献   

16.
一种微型FAIMS传感器芯片的研制   总被引:1,自引:0,他引:1  
李华  王晓浩  唐飞  张亮  杨吉  吝涛  丁力 《物理化学学报》2010,26(5):1355-1363
基于微机电系统(MEMS)技术,研制了一种微型高场非对称波形离子迁移谱(FAIMS)传感器芯片.芯片尺寸为18.8mm×12.4mm×1.2mm,由离子化区、迁移区、离子检测区组成.采用真空紫外灯离子源在大气压环境下对样品进行离子化,经过离子化区中聚焦电极的电场作用,实现离子在进入迁移区之前的聚焦,提高离子信号的强度.通过在上下玻璃上溅射Au/Cr(300nm/30nm)金属,并与厚度为200μm、采用感应耦合等离子体(ICP)工艺刻蚀的硅片键合,形成迁移区的矩形通道,尺寸为10mm×5mm×0.2mm.离子检测区为三排直径200μm、间距100μm交错排列的圆柱阵列式微法拉第筒,能同时检测正负离子.采用频率为2MHz,最大电压为364V,占空比为30%的高场非对称方波电压进行FAIMS芯片实验.以丙酮和甲苯为实验样品,载气流速80L·h-1,补偿电压从-10V到3V以0.1V的步长进行扫描,得到了丙酮和甲苯的FAIMS谱图,验证了FAIMS芯片的性能.丙酮和甲苯的FAIMS-MS实验进一步表明FAIMS系统实现了离子分离和过滤功能.  相似文献   

17.
A new two-dimensional ion mobility spectrometry approach combined with mass spectrometry has been used to examine ubiquitin ions in the gas phase. In this approach ions are separated in an initial drift tube into conformation types (defined by their collision cross sections) and then a gate is used to introduce a narrow distribution of mobility-separated ions into a second drift tube for subsequent separation. The results show that upon selection a narrow peak shape is retained through the second drift tube. This requires that at 300 K the selected distribution does not interconvert substantially within the broader range of structures associated with the conformation type within the approximately 10-20 ms time scale of these experiments. For the [M + 7H]7+ ion, it appears that many ( approximately 5-10) narrow selections can be made across each of the compact, partially-folded, and elongated conformer types, defined previously (Int. J. Mass Spectrom. 1999, 187, 37-47).  相似文献   

18.
The performance of a planar differential mobility spectrometer (DMS) is investigated when operated in air at ambient pressure and driven by a rectangular asymmetric waveform, limited to frequencies of <1.2 MHz and voltage pulse amplitudes of <1 kV with steep rise times of the order of approximately 15 ns. Independent control of frequency, voltage pulse amplitude, and duty cycle allow for characterizing the DMS in terms of transmission, resolution and separation. The tradeoff between sensitivity and resolution and the effect of duty cycle on instrument performance are demonstrated experimentally. The dependence of ion mobility on the magnitude of the electric field determines the displacement of ions measured by the DC compensation voltage as a function of the duty cycle. Optimum values for the duty cycle exist for the separation of A- and C-type ions, while, B-type ions exhibit a more complex behavior. An analytical expression for describing the effect of duty cycle on the separation of the ions, determined by variations in the compensation voltage, is developed and compared to experimental results obtained in air below 75 Td using estimated alpha parameters for a set of ketones. In this context, errors associated with the calculation of alpha parameters using polynomials of even powers are highlighted.  相似文献   

19.
Prasad S  Schmidt H  Lampen P  Wang M  Güth R  Rao JV  Smith GB  Eiceman GA 《The Analyst》2006,131(11):1216-1225
Eight vegetative bacterial strains and two spores were characterized by pyrolysis-gas chromatography with differential mobility spectrometry (py-GC/DMS) yielding topographic plots of ion intensity, retention time, and compensation voltage simultaneously for ions in positive and negative polarity. Biomarkers were found in the pyrolysate at characteristic retention times and compensation voltages and were confirmed by standard addition with GC/MS analyses providing discrimination between Gram negative and Gram positive bacterial types, but no recognition of individual strains within the Gram negative bacteria. Principal component analysis was applied using two dimensional data sets of ion intensity versus retention time at five compensation voltages including the reactant ion peaks all in positive and negative ion polarity. Clustering was observed with compensation voltage (CV) chromatograms associated with ion separation in the DMS detector and little or no clustering was observed with the reactant ion peaks or CV chromatograms where ion separation is poor. Consistent clustering of Gram positive B. odysseyi and Gram negative E. coli in both positive and negative polarities with the reactant ion peak chromatograms and key CV chromatograms suggests common but unknown common chemical compositions in the pyrolysate.  相似文献   

20.
Abu B. Kanu 《Talanta》2007,73(4):692-699
This work demonstrated the potential of using a secondary drift gas of differing polarizability from the primary drift gas for confirmation of a positive response for drugs or explosives by ion mobility spectrometry (IMS). The gas phase mobilities of response ions for selected drugs and explosives were measured in four drift gases. The drift gases chosen for this study were air, nitrogen, carbon dioxide and nitrous oxide providing a range of polarizability and molecular weights. Four other drift gases (helium, neon, argon and sulfur hexafluoride) were also investigated but design limitations of the commercial instrument prevented their use for this application. When ion mobility was plotted against drift gas polarizability, the resulting slopes were often unique for individual ions, indicating that selectivity factors between any two analytes varied with the choice of drift gas. In some cases, drugs like THC and heroin, which are unresolved in air or nitrogen, were well resolved in carbon dioxide or nitrous oxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号