共查询到20条相似文献,搜索用时 15 毫秒
1.
L. N. Ambroladze Ts. D. Turkadze G. A. Alpaidze M. G. Apkhadze 《Russian Journal of Inorganic Chemistry》2008,53(11):1759-1762
Thermolysis during continuous heating in air from room temperature to ~1000°C was studied for cobalt(II) complexes with cyanuric acid: [CoL2(OH2)2]Cl2 · 4H2O, [CoL2(OH2)2]SO4 · 3H2O, and [CoL2(OH2)2](NO3)2 (L stands for cyanuric acid C3H3N3O3). Thermoanalytical and thermogravimetric curves for these complexes and IR absorption spectra (400–4000 cm?1) for their thermolysis products at various stages were described. 相似文献
2.
Talal A.K. Al-Allaf Gregory Butler Colin Eaborn Alan Pidcock 《Journal of organometallic chemistry》1980,188(3):335-343
The complex [Pt(C2H4)(PPh3)2] reacts with Pb2Ph6 to give cis-[PtPh(Pb2Ph5)(PPh3)2]; this decomposes in solution to cis-[PtPh(PbPh3)(PPh3)2], which may also be obtained from the ethylene complex and PbPh4. Lead compounds PbPhMe3 and PbPh3Br also give products of insertion into PbPh bonds, but PbMe3Cl gives cis- and trans-[PtCl(PbMe3)(PPh3)2]. The complex trans-[Pt(PbPh3)2(PEt3)2] reacts with 1,2-bis(diphenylphosphino)ethane (DPPE) to give [Pt(PbPh3)2(DPPE)] which readily decomposes in dichloromethane in presence of PEt3 to give [Pt(PbPh3)(PEt3)(DPPE)]Cl and [PtPh(PEt3)(DPPE)]Cl. The complex trans-[PtCl(PbPh3)(PEt3)2] was detected in the products of reactions between trans-[PtCl2(PEt3)2] and trans-[Pt(PbPh3)2(PEt3)2] or less than 2 moles of LiPbPh3; it was not detected in the mixture after treatment of trans -[Pt(PbPh3)2(PEt3)2] with HCl. In contrast to an earlier report, we were unable to detect lead-containing complexes in the products of the reaction between trans-[PtHCl(PPh3)2] and Ph3PbNO3. The complexes and their decomposition products were identified by pre31P-{1H} NMR spectroscopy. 相似文献
3.
The reactions of the two complexes BBR3464 [{trans-PtCl(NH3)2}2{mu-trans-Pt(NH3)2(NH2(CH2)6NH2)2}](4+) and BBR3610 [{trans-PtCl(NH3)2}2{mu-C2H4(NH2(CH2)6NH2)2}](4+) and the corresponding diaqua complexes with the nucleophiles thiourea (tu) and l-methionine (l-Met), were investigated under pseudo-first-order conditions as a function of concentration and temperature, using UV-vis spectrophotometric and stopped-flow techniques. 1H NMR spectroscopy was used to follow the stepwise substitution of the chloro ligands by guanosine-5'-monophosphate under second-order conditions. For the sulfur donor containing nucleophiles (tu and l-Met), a second reaction step, the displacement of the labilized amine chain linker, as a result of the strong trans-effect of tu and l-Met, was found. The activation parameters for all reactions studied suggest an associative substitution mechanism. The displacement of the chain linker by S-donor nucleophiles illustrates the limit of application of polynuclear complexes with monodentate aliphatic amine bridges and primary ammines, in agreement with previous studies reported in the literature. 相似文献
4.
Zh. V. Dobrokhotova I. G. Fomina M. A. Kiskin A. A. Sidorov V. M. Novotortsev I. L. Eremenko 《Russian Chemical Bulletin》2006,55(2):256-266
Solid-phase thermal decomposition of polynuclear NiII and CoII pivalate complexes was studied by differential scanning calorimetry and thermogravimetry. The decomposition of the polynuclear
(from bi-to hexanuclear) CoII carboxylate complexes is accompanied by aggregation to form a volatile octanuclear complex. Thermolysis of the polynuclear
NiII carboxylates results in their destructure, and the phase composition of the decomposition products is determined by the
nature of coordinated ligands.
Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 250—260, February, 2006. 相似文献
5.
《Journal of organometallic chemistry》1987,322(3):405-411
The compounds trans-[Pt(OCHO)R(PPh3)2] (R = C6Cl5; 2,3,4,6-C6HCl4; 2,3,4,5-C6HCl4; 2,5-C6H3Cl2) have been prepared by treatment of [PtIR(PPh3)2] with AgClO4 followed by reaction with NaOCHO in methanol. The cis isomers have been obtained by the direct reaction of HCO2H with compounds containing PtHg bonds. For these and the analogous compounds containing C6F5 ligands, the dependence of J(31P195Pt) on R has been studied, and the effects of cis-R shown to be in the opposite direction from those of trans-R ligands. 相似文献
6.
The complex [O3ClOPt(C6F5)(PEt3)2] which we have prepared for the first time, is used as a precursor of a series of cationic complexes [LPt(C6F5)(PEt3)2]ClO4 (L = PEt3, AsPh3, H2O, CO, OPPh3, SPPh3, HNPr2, py), which are easily obtained by adding L to the perchlorato complex. 相似文献
7.
《Chemical physics letters》1985,122(4):375-379
The absorption spectra, emission spectra, and emission lifetimes of Pt(Phpy)2, Pt(Thpy)2, and Pt(Bhq)2 complexes (Phpy−, Thpy−, and Bhq− are the ortho C-deprotonated forms of 2-phenylpyridine, 2-(2-thienyl)-pyridine, and benzo(h)quinoline) have been studied and compared with those of the C-protonated neutral ligands. For all complexes examined the low-energy absorption bands in the near UV and visible region are assigned to metal-to-ligand charge-transfer transitions. The strong and structured luminescence emissions observed in the 500–600 nm region (lifetime in the microsecond range at 77 K) are assigned to metal-to-ligand charge-transfer excited states. 相似文献
8.
Fabian Niedermair Roman Trattnig Kurt Mereiter Martin Schmuck Stefan Sax Emil J. W. List Christian Slugovc 《Monatshefte für Chemie / Chemical Monthly》2010,43(6):847-858
Abstract
Luminescent organoplatinum complexes featuring 8-quinolinolates as chelating ligands have been synthesized and characterized. Substitution of the quinolinolate ligand has been achieved in the 5 position, where benzoyl substituents were introduced by reacting 8-hydroxyquinoline and the corresponding benzoyl chloride in a Friedel–Crafts acylation. The resulting complexes, κ2(N,C2)-(2-(4-tert-butylphenyl)pyridine)-κ2(N,O)-(5-(4-tert-butylphenyl)(8-quinolinolato-5-yl)methanone)platinum(II) and κ2(N,C2)-(3-hexyloxy-2-phenylpyridine)-κ2(N,O)-((8-quinolinolato-5-yl)phenylmethanone)platinum(II), have been investigated by nuclear magnetic resonance and infrared spectroscopy, matrix-assisted laser desorption ionization time-of-flight mass spectrometry, X-ray analysis, thermal analysis, cyclic voltammetry, UV–vis absorption spectroscopy, and luminescence measurements in solution and in the solid state. The solid-state structures of the complexes were found to be dominated by π–π intermolecular interactions. Organic light-emitting devices based on the complexes and a matching host material gave red to near-infrared electroluminescence with low-onset voltages (4–5 V) and continuous wave luminance intensities exceeding 500 cd/m2. 相似文献9.
10.
A. Giraudeau P. Lemoine M. Gross P. Braunstein 《Journal of organometallic chemistry》1980,202(4):455-468
Linear trimetallic MPPtIIL2M complexes (M = Cr(CO)3(η-C5H5), Mo(CO)3- (η-C5H5), W(CO)3(η-C5-H5), Mn(CO)5, Fe(CO)3NO, Co(CO)4; L = t-BuNC, cyclo- C0H11 NC) are reduced on platinum and gold electrodes in non-aqueous medium. All these complexes undergo irreversible one electron reductions, which result in the rupture of one Ptmetal bond and the liberation of one M? ion per mole reduced. Coupled ESR spectroscopy and coulometry show that a radical is generated during the reduction of the trimetallic complexes. The several ESR signals obtained for these paramagnetic Pt1 species exhibit no hyperfine structure.The electrochemical behaviour of MPtL2M complexes is compared with that of the following linear trimetallic complexes: MHgM and (MAuM)?. 相似文献
11.
B. Crociani M. Nicolini D.A. Clemente G. Bandoli 《Journal of organometallic chemistry》1973,49(1):249-256
Complexes of the type M(PPh3)2(PbPh3)2 [M = Pd, (Ia) and Pt, (Ib)] have been prepared by oxidative addition of hexaphenyldilead to M(PPh3)4. The compound Pt(PPh3)2(PbPh3)2, (Ib), slowly decomposes in dichloromethane to give cis-Pt(PPh3)2(PbPh3)Ph, (II). which can also be obtained by treating (Ib) with the stoichiometric amount of LiPh. Reaction of Pt(PPh3)4 with hexamethyldidead gives the complex Pt(PPh3)2(PbMe3)Me directly.The MPb bonds are easily cleaved by bromine, iodine and hydrogen bromide. The X-ray structure of (II) has been determined using three-dimensional counter data and refined by the least-square method (R = 0.07). The crystals are monoclinic a = 22.501, b = 10.502, c = 24.120 Å, β = 113.43°, space group P21/c with Z = 4. The complex exhibits a cis configuration, with the coordination around the platinum atom essentially square-planar: the PtPb and PtC(phenyl)bond lengths are 2.698(1) and 2.055(3)Å, respectively. 相似文献
12.
A comprehensive photophysical investigation has been carried out on a series of eight complexes of the type (diimine)Pt(-C=C-Ar)(2), where diimine is a series of 2,2'-bipyridine (bpy) ligands and -C=C-Ar is a series of substituted aryl acetylide ligands. In one series of complexes, the energy of the Pt --> bpy metal-to-ligand charge transfer (MLCT) excited state is varied by changing the substituents on the 4,4'- and/or the 5,5'-positions of the bpy ligand. In a second series of complexes the electronic demand of the aryl acetylide ligand is varied by changing the para substituent (X) on the aryl ring (X = -CF(3), -CH(3), -OCH(3), and -N(CH(3))(2)). The effect of variation of the substituents on the excited states of the complexes has been assessed by examining their UV-visible absorption, variable-temperature photoluminescence, transient absorption, and time-resolved infrared spectroscopy. In addition, the nonradiative decay rates of the series of complexes are subjected to a quantitative energy gap law analysis. The results of this study reveal that in most cases the photophysics of the complexes is dominated by the energetically low lying Pt --> bpy (3)MLCT state. Some of the complexes also feature a low-lying intraligand (IL) (3)pi,pi excited state that is derived from transitions between pi- and pi-type orbitals localized largely on the aryl acetylide ligands. The involvement of the IL (3)pi,pi state in the photophysics of some of the complexes is signaled by unusual features in the transient absorption, time-resolved infrared, and photoluminescence spectra and in the excited-state decay kinetics. The time-resolved infrared difference spectroscopy indicates that Pt --> bpy MLCT excitation induces a +25 to + 35 cm(-)(1) shift in the frequency of the C=C stretching band. This is the first study to report the effect of MLCT excitation on the vibrational frequency of an acetylide ligand. 相似文献
13.
14.
15.
Summary As an approach to systems containing methionine residues, 3-acetyl-4-hydroxy-6-methyl-2H-pyran-2-one (HDh, dehydroacetic acid) was treated with L-methionine (MetH) or L-methionine methylester (MetM). By condensation at the acyl group and transfer of the phenolic hydrogen on the nitrogen atom, the related ligands DhMetH and DhMetM, were isolated, and form complexes of formula [MX2(L)2](M = Pd or Pt, L = DhMetM, X = Cl, Br or I; L = DhMetH, X = Cl or Br) and [MI2(DhMetH)] with palladium and platinum dihalides. The reaction of the DhMetK carboxylate with MCl2 in various media is discussed. Ligands and complexes were characterized by i.r. and n.m.r. (1H and13C) spectroscopy and, in some cases, by thermogravimetric measurements. The ligands behave as monodentate sulphur donors, the 12 complexes showing atrans geometry except for [PtCl2(DhMetH)2], which is probably a mixture ofcis andtrans isomers. 相似文献
16.
Carbamoyl and alkoxycarbonyl complexes of palladium(II) and platinum(II) of the type M(pnp)(CONHR)Cl (pnp = 2,6-bis(diphenylphosphinomethyl)pyridine; M Pd, R C6H5, p-CH3C6H4, p-CH3OC6H4, C6H11, t-Bu; M Pt, R C6H5), Pd(pnp)[CON(Pr)2]Cl (Pr = propyl), M(pnp)(COOR)Cl (M Pd, R C6H5, CH3; M Pt, R CH3), Pd(pnp)(COOCH3)2 result from reaction of M(pnp)Cl2 with carbon monoxide and amines or alkoxides at room temperature and atmospheric pressure.The carbamoyl complexes react with bases to give urethane or diphenylurea depending upon the experimental conditions. 相似文献
17.
G. V. Romanenko O. V. Kuznetsova E. Yu. Fursova V. I. Ovcharenko 《Journal of Structural Chemistry》2014,55(3):481-487
Using single crystal X-ray diffraction the structure of polynuclear [Ni6(OH)4(Piv)7(HOC4H8O)(HPiv)4], {K4[Ni12(CO3)2(Piv)16(OH)8(HOC4H8OH)2]}HPiv, {[Ni6(OH)4(Piv)6(HOC4H8O)(Me2CO)(HOC4H8OH)2]4×(Piv)4}, and {K[Ni2L2(Piv)3]}∞ complexes, where HOC4H8OH is 1,4-butanediol, HPiv is pivalic acid, and L is the anion of nitroxyl radical 2,2,5,5-tetramethyl-4-(3′,3′,3′-trifluoro-2′-oxy-1′-propenyl)-3-imidazolin-1-oxyl is determined. 相似文献
18.
Crystals of trans-Pt?(μ-X)?X?(CO)? (X = Br, I) have been grown and their molecular and crystalline structures have been solved by X-ray diffraction methods. In both cases the dinuclear molecules are bent, with a bending angle of 164.6° and 156.5° for the bromide and the iodide, respectively. While the structure of the bromo-derivative is reported here for the first time, a modification of trans-Pt?(μ-I)?I?(CO)? with planar centrosymmetric molecules is known. This appears to be a rare case of a platinum(II) halo-bridged derivative structurally characterized in both bent and planar forms. 相似文献
19.
The chemistry of binuclear palladium(II) and platinum(II) complexes has been reviewed. This review deals with complexes derived from various classes of ligands and covers various aspects, viz. synthesis, spectroscopic and structural features and chemical reactivity, of these complexes. Applications of these complexes are briefly described in the respected sections. 相似文献
20.
The [M(dithiocarbamato)(Mol)]Cl complexes [M = Pd or Pt; dithiocarbamato = DMDT (Me2NCS–
2) or ESDT (EtO2CCH2MeNCS–
2); Mol = L-methioninol (L-2-amino-4-methylthio-1-butanol)] have been prepared by reacting methioninol with the appropriate [M(dithiocarbamato)Cl]
n
complex in a 1:1 molar ratio in chlorinated hydrocarbons. By operating at a 1:2 molar ratio, the binuclear species [M2(dithiocarbamato)2(Mol)Cl2] were obtained. The complexes were characterized by i.r., n.m.r. and electrospray ionisation (ESI) mass spectra and by t.g.a. The [M(dithiocarbamato)(Mol)]Cl species are ionic and contain S,N-chelated methioninol. The ligand forms an S,N bridge between two metal atoms in the binuclear species, whose formation is confirmed by the presence of the deprotonated molecular ion in the ESI negative ion mode. 相似文献