首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
介绍了金属有机气相沉积(MOCVD)制备Mo2C功能膜的过程和对膜表面粗糙度的测量结果;在测量基础上进行统计,找出Mo2C膜表面高度和高差分布规律;将DT2模型推广,进行2+1维计算机模拟,作出Mo2C膜表面3维模拟图·结果表明:实验测得的高度和高差统计分布与计算机模拟的结果一致。  相似文献   

2.
用计算机模拟的方法详细研究了聚丙烯薄膜表面分子级别的结构 .采用无定形本体聚丙烯产生初始的随机父链 ,将一条随机父链在二维边界条件下进行塌陷 ,研究薄膜在真空中的构型 .用 10 0个重复单元的父链生成厚度为 3 5nm的薄膜 .发现薄膜内部密度等于聚丙烯的本体密度 ,而离自由表面 0 8nm处薄膜的密度开始跌落 .主链键在内部随机取向 ,在自由表面附近则明显沿薄膜表面平面取向 ,键开始有序取向的程度大致与质量密度相对于本体密度的减小一致 .与聚丙烯本体相比 ,薄膜表面中CH2 CH 的反式结构和旁式结构是增加的 ,这是因为分子链能更好的沿薄膜平面舒展 .同时通过聚丙烯无定形本体 (3D周期性 )和薄膜 (2D周期性 )中的链的能量的差异计算了薄膜内部能量对表面能量的贡献 .  相似文献   

3.
考察了反应温度、气体空速和进料中CH4:O2比值对Mo2C/Al2O3催化的POM反应制合成气的影响.结果发现较高的温度具有较高的甲烷转化率、CO和H2的选择性;而在较低的温度下,对CO的选择性比对H2的影响更大.反应气体的空速较小时对于甲烷的转化率、CO和H2的选择性是有利的;而在较高的气体空速下,氢气的选择性则更低.进料中CH4:O2比值稍高于2:1时有利于获得高的甲烷转化率、CO和H2的选择性.并且还可以增加催化剂的稳定性.当CH4:O2比值低于2:1时.甲烷转化率、CO和H2选择性随反应的进行急剧下降.而当此比值调整到高于2:1时.转化率和选择件都可以得到恢复。  相似文献   

4.
计算机模拟技术在表面活性剂研究中的应用   总被引:5,自引:2,他引:5  
根据表面活性剂溶液行为的模拟所需的时间和空间尺度,介绍了三种主要的计算机模拟方法:原子模拟、粗粒模拟和介观模拟.综述了这些模拟方法在表面活性剂单体、缔合体系及与聚合物相互作用等研究中的应用.指出了用计算机模拟方法研究表面活性剂体系的发展前景.  相似文献   

5.
TiO2纳米膜表面结构形态特征   总被引:4,自引:2,他引:4  
采用反胶束法制备TiO2纳米溶胶,用浸渍提拉法在不同的条件下制备了三种TiO2多孔纳米薄膜,并利用AFM、SEM、XRD等方法对膜表面结构物理化学特性进行表征.结果表明三种膜基本上由粒径约为59 nm的纳米粒子以不同的方式堆积而成,溶胶刚生成时浸提一次,干燥、焙烧得到膜上纳米粒子分布均匀,所生成的二次粒子粒径最小,二次粒子形成的二次表面粗糙度最小,浸提10次得到膜上纳米粒子间存在较丰富缝隙结构,二次粒子粒径及其形成的表面粗糙度较大,而溶胶制备好陈化6 h后浸提得到的膜上二次粒子粒径最大,表面粗糙度最高.由分形理论估算得到三种膜的分形维数分别是2.22、2.20和2.27. XRD测试表明,膜上TiO2为锐钛矿晶相.这些结果表明,采用不同制备步骤得到的膜,其表面结构形态存在较大的差异.  相似文献   

6.
用分子力学方法模拟了十二烷烃在硅表面的单层膜的排列情况. 从中发现: 十二烷烃在硅表面的覆盖率约为50%, (8×8)大小的模拟格子即可描述烷烃链在硅表面的空间排列. 同时讨论了不同取代方式对单层膜的影响, 并比较了酯基和甲基终止的硅表面单层膜的空间排列方式, 模拟结果与实验测量基本吻合. 结果表明: 分子模拟方法可以作为实验手段的一种辅助工具, 在分子水平上为实验提供理论支持和微观信息.  相似文献   

7.
Mo掺杂TiO2/AC负载膜的制备及光催化活性   总被引:17,自引:0,他引:17  
溶胶-凝胶法;Mo掺杂TiO2/AC负载膜的制备及光催化活性  相似文献   

8.
利用XPS考察了超细Mo/Al2O3的氧化态及反应后的表面结构性质.结果表明,氧化态催化剂中Mo主要以Mo6+形式存在,而反应后则以Mo6+和Mo4+两种价态共存;硫亦存在-2及+6两种价态.不同价态Mo、S物种存在的比例受催化剂Mo含量及制备方法的影响.Mo含量增加,Mo6+所占的比例逐渐减小,Mo4+所占比例逐渐增加,S6+的比例则随Mo含量的增加而下降.  相似文献   

9.
Mo2N的表面性质和加氢脱氮活性   总被引:1,自引:0,他引:1  
以XRD、H2-TPD、TPS方法研究了钝化和硫化处理对Mo2N体相结构和表面性质、以及对吡啶加氢脱氮(HDN)催化活性的影响。Mo2N经钝化或在673K硫化后,虽然其体相结构不发生变化,但其表面性质却发生了明显的异变,并伴随其加氢脱氮活性的显著降低.由Mo2N在不同钝化条件下生成的部分氧化产物以及H2-TPD结果,推测在缓慢钝化条件下,Mo2N表面钝化层为MoO2根据Mo2N硫化后的H2-TPD和相应HDN活性变化,以及Mo2N的TPS结果,认为Mo2N经673K硫化后其表面结构发生了硫化异变.  相似文献   

10.
刘晶  盖瑞侯得  闫俊青  刘生忠 《催化学报》2021,42(1):205-216,后插37-后插43
中性条件下的分解水产氢(HER)是化工领域的重要反应之一,其效率取决于催化剂的内在特性.在本工作中,我们利用3d金属(Fe,Co,Ni,Cu)对Mo2C进行掺杂来调节其费米能级,从而达到催化剂可在中性条件下吸附水并提高最终活性的目的.首先,利用简单浸渍法将四种金属的前驱体吸附到MoO3表面,然后通过煅烧一步合成金属掺杂的Mo2C.产物Mo2C的XRD峰位移以及XPS表征结果表明,四种金属通过掺杂进入到了Mo2C晶格.利用HRTEM以及相应的元素面扫分析,也证明金属确实掺杂进入了Mo2C体相.考察了Mo2C基催化剂在中性条件下电解水产氢的性能,结果表明,在10 mA/cm2条件下,Cu-Mo2C催化剂表现出最优的HER性能,其次,是Ni-Mo2C,Co-Mo2C,Fe-Mo2C和纯Mo2C,它们的过电位分别为78,90,95,100和173 mV,Tafel斜率分别是40,43,42,56和102 mV/dec.利用阻抗测试详细分析了催化剂-反应液界面电阻Rct的变化情况,样品Mo2C,Fe-Mo2C,Co-Mo2C,Ni-Mo2C和Cu-Mo2C拟合后的Rct值分别为119,89.6,46.5,33.8和23.2 ohm/cm^2,表明金属掺杂能明显降低催化剂的反应界面电阻.由于电催化过程的主要研究对象是表面双电层,所以我们利用循环伏安法计算了催化剂表面双电层的数值,得到上述五个样品的Cdl数值分别为0.047,0.06,0.1,0.16和0.24 F/cm^2,双电层的提高为催化剂表面提供了更多的反应位点.考虑了到光解水的界面反应实质也是电催化过程,我们通过浸渍方法将催化剂负载到锐钛矿TiO2表面,考察调控的功函数对光催化效率的影响.XPS表征验证了M-Mo2C负载于TiO2表面.负载助催化剂的TiO2-M-Mo2C样品均表现出了优于纯TiO2的光解水产氢性能.样品TiO2-Cu-Mo2C,TiO2-Ni-Mo2C,TiO2-Co-Mo2C,TiO2-Fe-Mo2C,TiO2-Mo2C和纯TiO2的产氢速率分别为21,404,275,224,147和112μmol/h.利用瞬态荧光研究了载流子在助催化剂和TiO2两相的界面迁移,通过单指数拟合得到样品TiO2,TiO2-Mo2C,TiO2-Fe-Mo2C,TiO2-Co-Mo2C,TiO2-Ni-Mo2C,TiO2-Cu-Mo2C和TiO2-Pt的荧光寿命分别是22.6,20.5,10.1,4.7,4.0,2.5和1.9 ns,说明不同金属掺杂的Mo2C对提取光生电子的效果不同,元素Cu最有效.进一步利用瞬态吸收光谱研究了TiO2-Mo2C,TiO2-Cu-Mo2C和TiO2-Pt三个样品的载流子迁移,同样采用单指数拟合得到的荧光寿命分别为105,73和31 ps,进一步说明掺杂Cu后助催化剂Mo2C对于提取TiO2的光生电子寿命具有很好的促进作用.利用UPS技术探究了金属掺杂后Mo2C的缺陷能级位置,从计算结果可以看出,元素Cu掺杂后Mo2C具有更深的缺陷能级,该能级对吸附水具有促进作用.利用原位红外光谱对样品进行了水蒸气吸附测试,结果表明,Mo2C,Fe-Mo2C,Co-Mo2C,Ni-Mo2C和Cu-Mo2C样品依次的吸附水性能提升.综上,我们利用3d金属对助催化剂进行了缺陷调控来调变其对水的起始吸附过电位,该工作对设计性能优异的光解水助催化剂具有一定的借鉴意义.  相似文献   

11.
用溶胶 凝胶法制备了一系列掺杂钼量不同的TiO2纳米薄膜.用XRD,SEM和CAS(ContactAngleSystem)对TiO2薄膜的结构和性能进行了表征.结果表明,Mo6+掺杂浓度对薄膜的热致亲水性和光致亲水性均有影响,当掺Mo6+质量分数为0.75%,热处理温度为400℃时,掺钼TiO2薄膜在黑暗中放置72h后仍能表现超亲水性.  相似文献   

12.
The reactivity of Mo and Mo2 with ammonia, ethene, and propene molecules has been investigated by using Density Functional Theory. Different gradient‐corrected and hybrid exchange‐correlation functionals have been employed. Coordination modes, binding energies, geometrical structures, vibrational frequencies have been computed and compared with the available experimental counterparts. The results obtained show that the molybdenum atom is able to react with C2H4 and C3H6, and binds weakly with NH3. The dimer Mo2 gives a stable complexes with ammonia, ethene, and propene. For the Mo2NH3 complex, all the employed levels of theory give binding energies in good agreement with the experimental value, while in the case of the MoC2H4 system, the use of model core potentials coupled with gradient‐corrected exchange‐correlation functionals overestimates the binding energies. For MoC3H6, Mo2C2H4, and Mo2C3H6 we predict a binding energy of 14–15, 20–24, and 18–20 kcal/mol, respectively. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 1557–1564, 2001  相似文献   

13.
PET表面锐钛矿-板钛矿相TiO2薄膜的制备及表征   总被引:1,自引:0,他引:1  
利用改进的溶胶-凝胶法在经表面改性的PET(聚对苯二甲酸乙二醇酯)表面制备得到TiO2薄膜. 利用X射线衍射(XRD)、原子力显微镜(AFM)、UV-Vis 透光率曲线、接触角测试仪等测试手段对TiO2样品的性能进行表征.结果表明, PET表面过渡层的引入有效地改善了有机基底与无机薄膜之间的界面相容性, 在其表面形成透明、均一、附着力良好且具有光催化活性的TiO2薄膜.通过控制实验过程, 在低温下成功制备了不同锐钛矿/板钛矿比的TiO2薄膜,同时发现适量板钛矿相的存在能有效提高薄膜的光致亲水性.  相似文献   

14.
Molybdenum carbide possessing a Pt-like d-band electronic structure is considered as one of potential candidates of electrocatalysts and it shows intrinsic catalytic property. However, a high carbonizing temperature easily leads to the coalescence of nanoparticles (NPs). Here, we propose a simple sol-gel route to achieve high dispersity of carbide NPs by designing a Mo-involved xerogel. The results show that molybdenum carbide NPs are dispersed and anchored on the nitrogen-doped carbon nanosheets (Mo2C@NC). Ultrathin carbon layers resemble graphene and the network structures act as a support of carbide NPs, which can hinder NPs’ coalescence effectively. Nanpoparticles cross-coupled on network-structure nanosheets display the grid shapes. Electrochemical studies indicate that Mo2C@NC material exhibits outstanding hydrogen evolution performance in alkaline electrolyte.  相似文献   

15.
Mo2C/Al2O3 catalyst was prepared by the impregnation method with urotropine and ammonium paramolybdate. The catalytic effect of Mo2C as a typical transition‐metal carbide in sulfur‐resistant methanation was studied. The catalysts prepared were characterized by N2 adsorption–desorption, X‐ray diffraction, transmission electron microscopy, H2‐temperature‐programmed reduction, and Raman spectra, with the results confirming the formation of β‐molybdenum carbide on the surface of the catalysts. Studies on catalysts with different loading doses indicate that the optimal loading of Mo2C/Al2O3 is about 15 wt.%, which enables CO conversion rate of up to 47%, with methane selectivity of up to 53%. This work further explored the effect of different concentrations of H2S in the raw gas on the performance of the catalyst, with the results showing that high concentration of H2S (>1500 ppm) can lead to sulfuration of active species on the catalyst, while resulting in a decrease in the catalytic activity.  相似文献   

16.
The conversion of nitrogen to ammonia by electrocatalysis under mild conditions is a valuable research direction, which has been a sustainable alternative to the traditional Haber-Bosch method. However, the conversion remains a huge challenge in chemistry at this time. In this work, the density functional theory (DFT) is used to study the electrocatalytic nitrogen reduction reaction (NRR) performance of Mo12 clusters on C2N monolayer (Mo12−C2N). It is found that the diversity of active sites of the Mo12 cluster provides favorable reaction paths for intermediates, which reduces reaction barrier of NRR. Mo12−C2N shows excellent NRR performances with limiting potentials of −0.26 V vs. reversible hydrogen electrode (RHE).  相似文献   

17.
Mo2C/Al2O3催化剂用于甲烷部分氧化(POM)制合成气的研究   总被引:7,自引:2,他引:7  
制备了一系列不同Mo2C担载量的Mo2C/A1203催化剂,利用微型固定床反应器对其POM反应进行了活性评价,并采用XRD、SEM和BET等方法进行了结构表征.实验结果表明,纯Mo2C催化剂在反应初期有较高的CH4转化率,但CO和H2的选择性很低,随着反应时间的增加,CH4转化率急剧下降.Mo2C担载量小于24.8%的催化剂,随担载量增加,CH4转化率明显升高.同时,随着反应时间的增加,CH4转化率有所下降,CO和H2的选择性则明显升高.Mo2C担载量在35.4%—42.5%的催化剂,具有好的CH4转化率和CO、H2选择性,但担载量过高时,CH4转化率会随反应时间的增加而下降.结构表征表明,未担载的和担载的碳化物催化剂均为β-Mo2C,担载量小于10.6%时,Mo2C高度分散于A12O3表面,担载量较高时,Mo2C颗粒变大,比表面减小.  相似文献   

18.
A simple, cost-effective strategy was developed to effectively improve the electron transfer efficiency as well as the power output of microbial fuel cells (MFCs) by decorating the commercial carbon paper (CP) anode with an advanced Mo2C/reduced graphene oxide (Mo2C/RGO) composite. Benefiting from the synergistic effects of the superior electrocatalytic activity of Mo2C, the high surface area, and prominent conductivity of RGO, the MFC equipped with this Mo2C/RGO composite yielded a remarkable output power density of 1747±37.6 mW m−2, which was considerably higher than that of CP-MFC (926.8±6.3 mW m−2). Importantly, the composite also facilitated the formation of 3D hybrid biofilm and could effectively improve the bacteria–electrode interaction. These features resulted in an enhanced coulombic efficiency up 13.2 %, nearly one order of magnitude higher than that of the CP (1.2 %).  相似文献   

19.
To reduce the cost of manufacture, it is urgent to develop efficient and stable platinum(Pt)-free counter electrode(CEs) electrocatalysts for dye-sensitized solar cells(DSSCs). In this study, a simple electrospinning and carbonization strategy has been developed to synthesize carbon nanofibers(CNFs) loaded with Ni and Mo2C nanoparticles(Ni/Mo2C/CNFs) as CE. Owing to the high electrical conductivity of CNFs and the large catalytic activity of Ni and Mo2C, an excellent electrochemical performance of Ni/Mo2C/CNFs as CE is achieved. The optimized DSSC assembled with Ni/Mo2C(2:1)/CNFs-based CE exhibits a power conversion efficiency(PCE) of 8.90%, which exceeds the corresponding values of the device using the Pt(8.07%), Ni/Mo2C(1:1)/CNFs(8.68%), Ni/Mo2C(1:2)/CNFs(8.20%), Ni/CNFs(7.50%) and Mo2C/CNFs(6.10%). This work provides a new strategy for developing effective and low-cost CE materials in DSSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号