共查询到20条相似文献,搜索用时 15 毫秒
1.
Second-order rate constants have been measured for alkaline hydrolysis of O-aryl thionobenzoates (X-C(6)H(4)-CS-OC(6)H(4)-Y) in 80 mol % H(2)O-20 mol % DMSO at 25.0 +/- 0.1 degrees C. The Hammett plot for the reaction of O-4-nitrophenyl X-substituted thionobenzoates (X-C(6)H(4)-CS-OC(6)H(4)-NO(2), 1a-e) exhibits a downward curvature. However, a possible traditional explanation in terms of a change in the rate-determining step (RDS) has been considered but rejected. The proposed explanation involves stabilization of the ground-state (GS) through-resonance interaction between the electron-donating substituent X and the thionocarbonyl functionality on the basis of the linear Yukawa-Tsuno plot obtained for the same reaction. The Br?nsted-type plot for the reaction of O-aryl thionobenzoates (C(6)H(5)-CS-OC(6)H(4)-Y, 2a-i) is linear but exhibits many scattered points with a small beta(lg) (-0.35). The Hammett plot for the same reaction shows rather poor correlation with sigma(-) constants but much better correlation with sigma(o) constants. The alkaline hydrolysis of O-aryl thionobenzoates (1a-e and 2a-i) has been proposed to proceed through an addition intermediate in which bond formation is the RDS. 相似文献
2.
M. Enyo 《国际化学动力学杂志》1975,7(3):463-471
A consecutive single-route reaction is considered. When two (groups of) steps compete in controlling the overall reaction rate, there exists a general rule that the earlier step in the flow of the overall reaction tends to be rate-determining with the increase of the reaction affinity. The latter may, however, be distributed more or less evenly to both steps. 相似文献
3.
Second‐order rate constants (kN) have been determined spectrophotometrically for the reactions of 2,4‐dinitrophenyl X‐substituted benzoates ( 1 a – f ) and Y‐substituted phenyl benzoates ( 2 a – h ) with a series of alicyclic secondary amines in MeCN at 25.0±0.1 °C. The kN values are only slightly larger in MeCN than in H2O, although the amines studied are approximately 8 pKa units more basic in the aprotic solvent than in H2O. The Yukawa–Tsuno plot for the aminolysis of 1 a – f is linear, indicating that the electronic nature of the substituent X in the nonleaving group does not affect the rate‐determining step (RDS) or reaction mechanism. The Hammett correlation with σ? constants also exhibits good linearity with a large slope (ρY=3.54) for the reactions of 2 a – h with piperidine, implying that the leaving‐group departure occurs at the rate‐determining step. Aminolysis of 2,4‐dinitrophenyl benzoate ( 1 c ) results in a linear Brønsted‐type plot with a βnuc value of 0.40, suggesting that bond formation between the attacking amine and the carbonyl carbon atom of 1 c is little advanced in the transition state (TS). A concerted mechanism is proposed for the aminolysis of 1 a – f in MeCN. The medium change from H2O to MeCN appears to force the reaction to proceed concertedly by decreasing the stability of the zwitterionic tetrahedral intermediate (T±) in aprotic solvent. 相似文献
4.
Christian R Goldsmith Robert T Jonas T Daniel P Stack 《Journal of the American Chemical Society》2002,124(1):83-96
Lipoxygenases are mononuclear non-heme iron enzymes that regio- and stereospecifcally convert 1,4-pentadiene subunit-containing fatty acids into alkyl peroxides. The rate-determining step is generally accepted to be hydrogen atom abstraction from the pentadiene subunit of the substrate by an active ferric hydroxide species to give a ferrous water species and an organic radical. Reported here are the synthesis and characterization of a ferric model complex, [Fe(III)(PY5)(OMe)](OTf)(2), that reacts with organic substrates in a manner similar to the proposed enzymatic mechanism. The ligand PY5 (2,6-bis(bis(2-pyridyl)methoxymethane)pyridine) was developed to simulate the histidine-dominated coordination sphere of mammalian lipoxygenases. The overall monoanionic coordination provided by the endogenous ligands of lipoxygenase confers a strong Lewis acidic character to the active ferric site with an accordingly positive reduction potential. Incorporation of ferrous iron into PY5 and subsequent oxidation yields a stable ferric methoxide species that structurally and chemically resembles the proposed enzymatic ferric hydroxide species. Reactivity with a number of hydrocarbons possessing weak C-H bonds, including a derivative of the enzymatic substrate linoleic acid, scales best with the substrates' bond dissociation energies, rather than pK(a)'s, suggesting a hydrogen atom abstraction mechanism. Thermodynamic analysis of [Fe(III)(PY5)(OMe)](OTf)(2) and the ferrous end-product [Fe(II)(PY5)(MeOH)](OTf)(2) estimates the strength of the O-H bond in the metal bound methanol in the latter to be 83.5 +/- 2.0 kcal mol(-1). The attenuation of this bond relative to free methanol is largely due to the high reduction potential of the ferric site, suggesting that the analogously high reduction potential of the ferric site in LO is what allows the enzyme to perform its unique oxidation chemistry. Comparison of [Fe(III)(PY5)(OMe)](OTf)(2) to other coordination complexes capable of hydrogen atom abstraction shows that, although a strong correlation exists between the thermodynamic driving force of reaction and the rate of reaction, other factors appear to further modulate the reactivity. 相似文献
5.
The kinetics and mechanism for the reaction of HCO with NO occurring by both singlet and triplet electronic state potential-energy surfaces (PESs) have been studied at the modified Gaussian-2 level of theory based on the geometric parameters optimized by the Becke-3 Lee-Yang-Parr/6-311G(d,p) method. There are two major reaction channels on both singlet and triplet PESs studied: one is direct H abstraction producing CO+HNO and the other is association forming a stable HC(O)NO (nitrosoformaldehyde) molecule. The dominant reaction is predicted to be the direct H abstraction occurring primarily by the lowest-energy path via a loose hydrogen-bonding singlet molecular complex, ON...HCO, with a 2.9-kcal/mol binding energy and a small decomposition barrier (1.9 kcal/mol). The commonly assumed HC(O)NO intermediate, predicted to lie below the reactants by 27.7 kcal/mol, has a high HNO-elimination barrier (34.5 kcal/mol). Bimolecular rate constants for the formation of the singlet products and their branching ratios have been calculated in the temperature range of 200-3000 K. The rate constant for the disproportionation process producing HNO+CO, found to be affected strongly by multiple reflections above the well of the complex at low temperature, is predicted to be k(HNO)=3.08 x 10(-12) T(0.10) exp(242T) for 200-500 K, and 1.72 x 10(-16) T(1.47) exp(888T) for 500-3000 K in units of cm(3) molecule(-1) s(-1). The high- and low-pressure rate constants for the association process forming HC(O)NO can be represented by k(infinity)=4.42 x 10(-11) T(0.25) exp(-28T) cm(3) molecule(-1) s(-1) (200-3000 K) and k(0)=7.30x10(-16) T(-5.75) exp(-719T) (200-1000 K) and 1.82 x 10(2) T(-11.92) exp(1846T) (1000-3000 K) cm(6) molecule(-2) s(-1) for N(2)-buffer gas. The absolute values of total rate constant, predicted to be weakly dependent negatively on temperature but positively on pressure, are in close agreement with most experimental data within their reported errors. 相似文献
6.
The fluorescence and phosphorescence quenching of acetone by 13 aliphatic amines has been investigated. The bimolecular rate constants lie in the range of 10(8)-10(9) M(-1) s(-1) for singlet-excited acetone and 10(6)-10(8) M(-1) s(-1) for the triplet case. The rate data indicate that a direct hydrogen abstraction process dominates for triplet acetone, while a charge-transfer mechanism, namely, exciplex-induced quenching, becomes important for singlet-excited acetone. Pronounced stereoelectronic effects toward H abstraction, e.g., for 1,4-diazabicyclo[2.2.2]octane (DABCO), and significant steric hindrance effects, e.g., for N,N-diisopropyl-3-pentylamine, are observed. A negative activation energy (E(a) = -0.9 +/- 0.2 kcal mol(-1) for triethylamine and DABCO) and the absence of a significant solvent effect on the fluorescence quenching of acetone are indicative of the involvement of exciplexes. Full electron transfer can be ruled out on the basis of the low reduction potential of acetone, which was found to lie below -3.0 V versus SCE. The participation of H abstraction for triplet acetone is corroborated by the respective quenching rate constants, which resemble the reaction rate constants for cumyloxyl radicals. The latter were measured for all 13 amines and showed also a dependence on the electron donor properties of the amines. It is suggested that the H abstraction proceeds directly and not through an exciplex or ion pair. Further, abstraction from N-H bonds in addition to alpha C-H bonds has been corroborated as a significant pathway for excited acetone. Product studies and quantum yields for photoreduction of singlet- and triplet-excited acetone by triethylamine (8% for S(1) versus 24% for T(1)) are in line with the suggested mechanisms of quenching through an exciplex and photoreduction through direct H abstraction. 相似文献
7.
Arisawa M Suzuki T Ishikawa T Yamaguchi M 《Journal of the American Chemical Society》2008,130(37):12214-12215
In the presence of a catalytic amount of RhH(PPh3)4 and 1,2-bis(diphenylphosphino)benzene, an aromatic fluoride, an organic disulfide (0.5 equiv), and triphenylphosphine (0.5 equiv) reacted in refluxing chlorobenzene to give an aryl sulfide in high yield. Since triphenylphosphine trapped fluoride atoms forming phosphine difluoride, both organothio groups of the disulfide reacted effectively, and the fluoride substituent reacted more readily than the chloride and bromide. The reaction of hexafluorobenzene and a diaryl disulfide gave 1,4-diarylthio-2,3,5,6-tetrafluorobenzene, 1,2,4,5-tetraarylthio-3,6-difluorobenzene, and hexaarylthiobenzene in a stepwise manner; pentafluorobenzene gave 1-arylthio-2,3,5,6-tetrafluorobenzene; 1,2,3,4-tetrafluorobenzene gave 1,2-diarylthio-3,6-difluorobenzene; and 1,2,4,5-tetrafluorobenzene gave 1,4-diarylthio-2-5-difluorobenzene. The polyarylthiolation reaction of polyfluorobenzenes exhibited a strong tendency to form 1,4-difluorobenzenes. 相似文献
8.
9.
Tobisch S 《Chemistry (Weinheim an der Bergstrasse, Germany)》2002,8(20):4756-4766
We present a theoretical investigation on the nature of the monomer insertion step in the allylnickel(II)-catalyzed 1,4-polymerization of 1,3-butadiene that employed a gradient-corrected DFT method. We have explored critical elementary steps of the whole polymerization cycle for the trans-1,4 regulating cationic allylnickel(II) [RC3H4NiII(C4H6)L]+ catalyst. These steps are i) cis-butadiene insertion into either the eta 1-sigma-butenyl-NiII bond (sigma-allyl insertion mechanism) or the eta 3-pi-butenyl-NiII bond (pi-allyl insertion mechanism) along with competing pathways for generation of trans-1,4 and cis-1,4 polymer units, and ii) anti-syn isomerization. Based on the analysis of geometric and electronic structures of key species involved and the energetics, we present a detailed insight into the different nature of the monomer insertion step according to the two mechanistic alternatives. An understanding of why the pi-allyl insertion mechanism is favored over the sigma-allyl insertion mechanism is provided. eta 1-sigma-butenyl-NiII Species are predicted to be sparsely populated and also distinctly less reactive than eta 3-pi-butenyl-NiII species. Although they are commonly believed to be reactive intermediates, eta 1-sigma-butenyl-NiII species are, therefore, not likely to be involved along viable pathways for cis-butadiene insertion into the butenyl-NiII bond. The present investigation corroborates our previous conclusion that the pi-allyl insertion mechanism represents the preferred mechanism for the monomer insertion step in the allylnickel(II)-catalyzed 1,4-polymerization of 1,3-butadiene. On the other hand, the suggested alternative sigma-allyl insertion mechanism has to be considered to be not operative, for both thermodynamic and kinetic reasons. Furthermore, the sigma-allyl insertion mechanism would neither provide a rationalization of cis-trans selectivity nor of chemoselectivity in the allylnickel(II)-catalyzed 1,4-polymerization of 1,3-butadiene. 相似文献
10.
[reaction: see text]. The nucleophilic aromatic substitution reaction between electron-deficient aryl fluorides and aryl TBDMS (or TMS) ethers has been shown to be efficiently promoted by proazaphosphatranes such as P(i-BuNCH(2)CH(2))(3)N (3). Excellent yields of diaryl ether products were obtained under unusually mild conditions. 相似文献
11.
12.
V. L. Lobachev Ya. V. Matvienko E. S. Rudakov 《Theoretical and Experimental Chemistry》2010,46(2):119-125
The relative rate constants (kRH/kEtH), the temperature dependence of these constants at from 5 to 55 °C, and the activation parameters were found for reactions of propane, butane, pentane, hexane, isobutane, cyclopentane, and cyclohexane with peroxynitrous acid (HOONO) in water. The similarity of these results to the data for the reaction of alkanes with OH radicals confirms that the active species in the reactions of HOONO with hydrocarbons in water are OH radicals formed in the homolysis of the HO—ONO bond. 相似文献
13.
Claeyssens F Ranaghan KE Manby FR Harvey JN Mulholland AJ 《Chemical communications (Cambridge, England)》2005,(40):5068-5070
Multiple profiles for the reaction from chorismate to prephenate in the enzyme chorismate mutase calculated with hybrid density functional combined quantum mechanics/molecular mechanics methods (B3LYP/6-31G(d)-CHARMM27) agree well with experiment, and provide direct evidence of transition-state stabilization by this important enzyme, which is at the centre of current debates about the nature of enzyme catalysis. 相似文献
14.
Treweeke NR Hitchcock PB Pardoe DA Caddick S 《Chemical communications (Cambridge, England)》2005,(14):1868-1870
Diastereoselective substitution reactions of [small alpha]-bromoacyl-imidazolidinones with nitrogen nucleophiles can be promoted with either retention or inversion of configuration by carrying out reactions under epimerising or non-epimerising conditions. 相似文献
15.
[reaction: see text] The CuI-catalyzed coupling reaction of aryl halides with beta-amino acids or beta-amino esters is completed at 100 degrees C in 48 h, which indicates that the structure of the beta-amino acid has an accelerating effect for the Ullmann-type aryl amination reaction. This coupling reaction can be used to prepare enantiopure N-aryl beta-amino acids. An efficient synthetic route to SB214857, a potent GPIIb/IIIa receptor antagonist, is developed using this method. 相似文献
16.
The aminolysis of aryl chlorothionoformates (7, YC(6)H(4)OC(=S)Cl) with anilines (XC(6)H(4)NH(2)) in acetonitrile at 5.0 degrees C has been investigated. The rates are slower than those for the corresponding reactions of aryl chloroformates (6, YC(6)H(4)OC(=O)Cl). This rate sequence is a reverse of that for alkyl chloroformates (1-4) in water, for which rate-limiting formation of a tetrahedral intermediate, T(+/-), is predicted. On the basis of the large negative cross-interaction constant, rho(XY) = -0.77, failure of the reactivity-selectivity principle, normal k(H)/k(D) values involving deuterated nucleophiles (XC(6)H(4)ND(2)), and low DeltaH(not equal) with large negative DeltaS(not equal) values, a concerted mechanism with a four-membered hydrogen bonded cyclic transition state (11) is proposed for the title reaction series. It has been shown that the solvent change from water to acetonitrile for the aminolysis of 6 and 7 causes a mechanistic change from stepwise to concerted. 相似文献
17.
18.
Paramathevar NagarajNamakkal G. Ramesh 《Tetrahedron》2011,67(48):9322-9328
A remarkable regioselectivity difference in the Lewis-acid catalyzed reactions of 2-C-acteoxymethyl glycals with thiophenols and phenols has been observed. The reaction with thiophenols led to preferential formation of a new class of compounds viz. 2-C-arylthiomethyl glycals via direct attack at the C-2 side chain primary carbon bearing the leaving group. In contrast, phenols were reported to afford predominantly 2-C-methylene-O-aryl glycosides via allylic attack at the anomeric carbon. The observed results correlate well with the HSAB principle proposed earlier for similar type of reactions with simple glycals. In addition, formation of an unusual bis-thioarylated product in presence of an excess of thiophenol is also reported. 相似文献
19.
Devendra Kumar 《Journal of polymer science. Part A, Polymer chemistry》1981,19(3):795-805
Based on nuclear magnetic resonance (NMR) studies, a probable reaction mechanism was proposed for the condensation polymerization of pyromellitic dianhydride with aromatic diamines in aprotic solvent, N,N-dimethylacetamide (DMAc), to yield aromatic polyimides. The mechanism shows the essential role played by the solvent during polymerization reaction and in imidization. It explains the formation of polyamic acid and that of its high molecular weight buildup under the conditions in which solid dianhydride was added to the solution of diamine in DMAc. A prepolymer complex formation was observed, along with the main polyamic acid, when solid diamine was added to the solution of dianhydride in DMAc. The structure of the prepolymer was derived on the basis of NMR and its formation explained in the mechanism. The nature of the prepolymer was such that on treatment with anhydride it goes to polyamic acid. 相似文献
20.
Third-order rate constants (kNu)H (M-2 s-1) for the hydronium ion catalyzed reactions of a range of nucleophiles with N-chlorotaurine (1) in water at 25 degrees C and I=0.5 (NaClO4) are reported. The solvent deuterium isotope effects on hydronium ion catalysis of the reaction with 1 of bromide and iodide ion are (kBr)H/(kBr)D=0.30 and (kI)H/(kI)D=0.54, respectively. The inverse nature of these isotope effects and the absence of general acid catalysis are consistent with a stepwise mechanism involving protonation of 1 in a fast preequilibrium step. The appearance of strong catalysis by general acids for the reaction of the more nucleophilic SO(3)2- and HOCH2CH2S- with the chloramine indicates a change to a concerted mechanism, with protonation of the chloramine at nitrogen and chlorine transfer to the nucleophile occurring in a single step. A rough estimate of the lifetime of the protonated chloramine in the presence of the thiolate anion suggests that the concerted mechanism is enforced by the absence of a significant lifetime of the protonated substrate in contact with the nucleophile. Theoretical calculations provide evidence against an electron-transfer mechanism for chlorination of the nucleophiles by protonated 1. 相似文献