首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
EPR, optical, infrared and Raman spectral studies of Actinolite mineral   总被引:1,自引:0,他引:1  
Electron paramagnetic resonance (EPR), optical, infrared and Raman spectral studies have been performed on a natural Actinolite mineral. The room temperature EPR spectrum reveals the presence of Mn(2+) and Fe(3+) ions giving rise to two resonance signals at g = 2.0 and 4.3, respectively. The resonance signal at g = 2.0 exhibits a six line hyperfine structure characteristic of Mn(2+) ions. EPR spectra have been studied at different temperatures from 123 to 433 K. The number of spins (N) participating in the resonance at g = 2.0 has been calculated at different temperatures. A linear relationship is observed between log N and 1/T in accordance with Boltzmann law and the activation energy was calculated. The paramagnetic susceptibility (chi) has been calculated at different temperatures and is found to be increasing with decreasing temperature as expected from Curie's law. From the graph of 1/chi versus T, the Curie constant and Curie temperature have been evaluated. The optical absorption spectrum exhibits bands characteristic of Fe(2+) and Fe(3+) ions. The crystal field parameter Dq and the Racah parameters B and C have been evaluated from the optical absorption spectrum. The infrared spectral studies reveal the formation of Fe(3+)--OH complexes due to the presence of higher amount of iron in this mineral. The Raman spectrum exhibits bands characteristic of Si--O--Si stretching and Mg?OH translation modes.  相似文献   

2.
Manganese doped nanocrystalline willemite powder phosphors Zn(2-x)Mn(x)SiO(4) (0.1(6)A(1) ground state. The mechanism involved in the generation of a green emission has been explained in detail. The effect of Mn content on luminescence has also been studied.  相似文献   

3.
Optical Switching in VO2 Thin Films   总被引:5,自引:0,他引:5  
Vanadium dioxide thin films have been deposited from vanadium alkoxides VO(OR)3. An amorphous film is formed that transforms into crystalline VO2 upon heating at 500°C under a reducing atmosphere. Optically transparent VO2 thin films are then obtained that exhibit both electrical and optical switching around 70°C. The switching temperature together with the shape of the hysteresis loop can be modified by doping VO2 films with foreign cations. Doped MxVO2 (M = W6+, Nb5+, Ti4+, Cr3+ or Al3+) thin films have been prepared under the same conditions by mixing the vanadium alkoxide and a metal salt in an alcoholic solution. The switching temperature decreases when the film is doped with high-valent cations (W6+) and increases with low-valent cations (Al3+, Cr3+). The transition temperature first decreases and then increases when TiIV is added to the VO2 film while the width of the hysteresis loop is significantly reduced.  相似文献   

4.
The reaction between Mn(6)L(12) and Mg(6)L(12) (L = N,N-diethylcarbamate) results in isolation of heteronuclear complexes Mn(n)Mg(6)(-)(n)L(12). A series was prepared with different doping factors n by varying the Mn/Mg ratio in the crystallization solutions. Single-crystal X-ray diffraction shows that MnMg(5)L(12) is isostructural with Mn(6)L(12) and Mg(6)L(12). Magnetic susceptibility data on the series Mn(n)Mg(6)(-)(n)L(12) (n = 1-6) are consistent with antiferromagnetic Mn.Mn interactions. At low n, the magnetic data demonstrate the formation of magnetically isolated Mn(2+) centers. This was confirmed by measurement of the EPR spectrum at a doping factor n = 0.06 in solution, as a powder, and as single crystals. These show hyperfine interactions consistent with isolated Mn(2+). The EPR spectrum of Mn(0.06)Mg(5.94)L(12) exhibits a dominant signal at g(eff) = 4, and a wide series of less intense signals spanning 200-6000 G in the X-band regime. This unusual behavior in a weak-field Mn(2+) complex is attributed to the substantial distortions from cubic ligand field geometry in this system. The g(eff) = 4 signals are attributed to a C(2)-symmetric hexacoordinate Mn(2+) ion with D > 0.3 cm(-)(1) and E/D = 0.33. The wide series is assigned to an axial C(4)(v) pentacoordinate Mn(2+) site with D = 0.05 cm(-)(1). Comparison of the g(eff) = 4 signals to the g = 4.1 signals exhibited by the tetramanganese complex in photosystem II belies the fact that they almost certainly arise from different spin systems. In addition, the similarity of the spectrum of Mn(n)Mg(6)(-)(n)L(12) to mononuclear Mn(4+) complexes suggests that considerable care must be exercised in the use of EPR as a fingerprint for the manganese oxidation state, particularly in manganese proteins where molecular composition may not be precisely established.  相似文献   

5.
The Zn(1-x)Mn(x)O (x = 0, 0.16, and 0.25) thin films were grown on fused quartz substrates by reactive magnetron cosputtering. X-ray-diffraction measurement revealed that all the films were single phase and had wurtzite structure with c-axis orientation. As Mn concentration increased in the Zn(1-x)Mn(x)O films, the c-axis lattice constant and band-gap energy increased gradually. In Raman-scattering studies, an additional Mn-related vibration mode appeared at 520 cm(-1). E(2H) phonon line of Zn(1-x)Mn(x)O alloy was broadened asymmetrically and redshifted as a result of microscopic structural disorder induced by Mn(2+) random substitution. The Zn(0.84)Mn(0.16)O film exhibited a ferromagnetic characteristic with a Curie temperature of approximately 62 K. However, with increasing Mn concentration to 25 at. %, ferromagnetism disappeared due to the enhanced antiferromagnetic superexchange interactions between neighboring Mn(2+) ions.  相似文献   

6.
(Zn(1-x-y)Mg(y))(2)GeO(4): xMn(2+) (y = 0-0.30; x = 0-0.035) phosphors with uniform submicrorod morphology were synthesized through a facile hydrothermal process. X-Ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), photoluminescence (PL), and cathodoluminescence (CL) spectroscopy were utilized to characterize the samples. SEM and TEM images indicate that Zn(2)GeO(4):Mn(2+) samples consist of submicrorods with lengths around 1-2 μm and diameters around 200-250 nm, respectively. The possible formation mechanism for Zn(2)GeO(4) submicrorods has been presented. PL and CL spectroscopic characterizations show that pure Zn(2)GeO(4) sample shows a blue emission due to defects, while Zn(2)GeO(4):Mn(2+) phosphors exhibit a green emission corresponding to the characteristic transition of Mn(2+) ((4)T(1)→(6)A(1)) under the excitation of UV and low-voltage electron beam. Compared with Zn(2)GeO(4):Mn(2+) sample prepared by solid-state reaction, Zn(2)GeO(4):Mn(2+) phosphors obtained by hydrothermal process followed by high temperature annealing show better luminescence properties. In addition, codoping Mg(2+) ions into the lattice to substitute for Zn(2+) ions can enhance both the PL and CL intensity of Zn(2)GeO(4):Mn(2+) phosphors. Furthermore, Zn(2)GeO(4):Mn(2+) phosphors exhibit more saturated green emission than the commercial FEDs phosphor ZnO:Zn, and it is expected that these phosphors are promising for application in field-emission displays.  相似文献   

7.
用角分布XPS法研究了MOD法制得的YBCO膜在热处理过程中膜的表面元素浓度变化以及膜与村底ZrO_2之间的原子扩散和固态化学反应。结果表明无论是薄膜(约0.1 μm)和较厚的膜(约1~1.5 μm), 在大约530~720 ℃的温度范围内加热后都发生铜表面富集和钡表面浓度偏低。在800 ℃以上加热后铜的表面浓度显著降低, 温度愈高, 降低愈甚。膜与衬底之间的化学反应也随温度升高而加剧。例如薄膜在890 ℃加热后钡向ZrO_2衬底扩散, 膜中的铜仍以+2价为主; 在950 ℃加热后衬底表面生成了富钡层, 而铜则主要以+1价的形式存在于富钡层表面。与厚膜相比, 在800 ℃以上薄膜与衬底的原子扩散和固态化学反应对于膜超导电性的损害更显著。  相似文献   

8.
The interaction of glassy carbon-supported thin wetting films of lecithin with some divalent cations is investigated by impedimetry and voltammetry. The influence of Ca2+, Mg2+, and Mn2+ on the film structure is explored in two different cases--the divalent cations are added to the electrolyte either before or after the formation of the film. When the film has been previously formed, the addition of divalent cations in millimolar concentrations leads to changes in the passive electrical parameters and the blocking properties of the films. On the one hand the dielectric properties of the film measured in 0.1 M KCl seem to improve after the interaction with divalent cations--the film capacitance decreases, the resistance and resistivity of the film increase. On the other hand the increase of the redox current in the presence of 1 mM Fe(CN)6(3-/4-) in the electrolyte suggests the formation of some defects in the lipid structure of the film after the action of divalent cations. It is shown that the amount of these defects could be significantly decreased when the divalent cations are present in the electrolyte solution before the film formation. The effect of divalent cations on the film stability is tested by applying negative potential to the film. In 0.1 M KCl the films are not stable at potential of - 0.8 V (vs. Ag/AgCl) and are destroyed. The addition of divalent cations stabilizes the films and at certain millimolar concentrations the films remain intact after the action of the negative potential. The effect of Mn2+ is more pronounced, the Ca2+ and Mg2+ have smaller commensurate effect. It is proposed that the changes in the films' properties could be related with more tight packing of the lipid molecules with the divalent cations inserted in the film and that some defects could be opened during the rearrangement of the lipids when the film has been previously formed.  相似文献   

9.
钛金属有机物热解制备TiO2-SiO2复合膜及其光催化活性研究   总被引:7,自引:1,他引:7  
陈小泉  古国榜  刘焕彬 《化学学报》2003,61(11):1714-1719
混有一定量SiO_2溶胶的钛金属有机化合物膜液通过旋液成膜法制备前驱物膜 ,经热解得到TiO_2-SiO_2复合膜。于610 ℃焙烧15min所得复合膜(Ti:Si=9:1)经 SEM,XRD,UV-vis和XPS研究表明,膜面由30 nm * 200 nm大小的晶体粒子组成, 结构致密,膜厚约200 nm,其可见光透过率为玻璃基质的80%,膜表面Ti~(3+)OH~- 的比值为1.06。对不同SiO_2含量的膜液凝胶进行DSC分析显示,少量的SiO_2就能 显著提高TiO_2锐钛矿型晶相的形成温度。膜的光催化活性研究表明一定量的Fe~ (3+)有利于提高膜的光催化活性,但是如果以氯化物的形式加入则对光催化反应不 利,铬的氯化物同样如此。另外,在钛金属有机物热解制备TiO_2-SiO_2复合膜中 ,溶胶SiO_2不利于光催化反应,但是它可以改善膜的耐磨性。  相似文献   

10.
Experiments demonstrate that Mg(2+) is crucial for structure and function of RNA systems, yet the detailed molecular mechanism of Mg(2+) action on RNA is not well understood. We investigate the interplay between RNA and Mg(2+) at atomic resolution through ten 2-μs explicit solvent molecular dynamics simulations of the SAM-I riboswitch with varying ion concentrations. The structure, including three stemloops, is very stable on this time scale. Simulations reveal that outer-sphere coordinated Mg(2+) ions fluctuate on the same time scale as the RNA, and that their dynamics couple. Locally, Mg(2+) association affects RNA conformation through tertiary bridging interactions; globally, increasing Mg(2+) concentration slows RNA fluctuations. Outer-sphere Mg(2+) ions responsible for these effects account for 80% of Mg(2+) in our simulations. These ions are transiently bound to the RNA, maintaining interactions, but shuttled from site to site. Outer-sphere Mg(2+) are separated from the RNA by a single hydration shell, occupying a thin layer 3-5 ? from the RNA. Distribution functions reveal that outer-sphere Mg(2+) are positioned by electronegative atoms, hydration layers, and a preference for the major groove. Diffusion analysis suggests transient outer-sphere Mg(2+) dynamics are glassy. Since outer-sphere Mg(2+) ions account for most of the Mg(2+) in our simulations, these ions may change the paradigm of Mg(2+)-RNA interactions. Rather than a few inner-sphere ions anchoring the RNA structure surrounded by a continuum of diffuse ions, we observe a layer of outer-sphere coordinated Mg(2+) that is transiently bound but strongly coupled to the RNA.  相似文献   

11.
[reaction: see text] The development of an ion-selective chemosensor for Cd(2+) allows generation of a "real-time" sensor. Immobilization of the chemosensor on quartz was achieved in a simple monolayer and in a thin film using a polymer intermediary. As intended, the thin film contains much more chemosensor than the monolayer and provides measurable responses to aqueous Cd(2+) concentrations below 1 microM. Alkali and alkaline earth ions do not interfere with Cd(2+) sensing; Zn(2+) and Cu(2+) are potential interferents.  相似文献   

12.
Preparation and characterization of lamellar magnesium hydroxide (Mg(OH)2) thin films on cotton fabrics are reported in this paper. Mercerized cotton fabrics were treated with citric acid, so carboxyl groups were introduced to the surface of the fabrics. Mg(OH)2 seeds were first adsorbed on the citric acid‐treated cotton fabrics and then Mg(OH)2 thin films grew on the fabric through secondary growth method. Kinetics and isotherm studies found that the adsorption of Mg(OH)2 seeds on citric acid‐treated cotton fabrics followed pseudo second‐order kinetic model and Langmuir isotherm. This indicated that Mg(OH)2 seeds adsorption was monolayer chemical adsorption driven by electric attraction between positively charged Mg(OH)2 seeds and ? COO? ions on the cotton fiber surface. The X‐ray diffraction (XRD) and SEM characterizations of the Mg(OH)2 thin films covered cotton fabrics found that standing flaky Mg(OH)2 crystals formed a shell of porous but continuous network on cotton fabric surface. Owing to the Mg(OH)2 thin film covering, the fabric had fireproof property, lower thermal conductivity and higher optical absorbance in the UV, Vis and IR regions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
The utility of electronically conductive metal–organic frameworks (EC‐MOFs) in high‐performance devices has been limited to date by a lack of high‐quality thin film. The controllable thin‐film fabrication of an EC‐MOF, Cu3(HHTP)2, (HHTP=2,3,6,7,10,11‐hexahydroxytriphenylene), by a spray layer‐by‐layer liquid‐phase epitaxial method is reported. The Cu3(HHTP)2 thin film can not only be precisely prepared with thickness increment of about 2 nm per growing cycle, but also shows a smooth surface, good crystallinity, and high orientation. The chemiresistor gas sensor based on this high‐quality thin film is one of the best room‐temperature sensors for NH3 among all reported sensors based on various materials.  相似文献   

14.
New synthesis procedures are described to tetranuclear manganese carboxylate complexes containing the [Mn(4)O(2)](8+) or [Mn(4)O(3)X](6+) (X(-) = MeCO(2)(-), F(-), Cl(-), Br(-), NO(3)(-)) core. These involve acidolysis reactions of [Mn(4)O(3)(O(2)CMe)(4)(dbm)(3)] (1; dbm is the anion of dibenzoylmethane) or [Mn(4)O(2)(O(2)CEt)(6)(dbm)(2)] (8) with HX (X(-) = F(-), Cl(-), Br(-), NO(3)(-)); high-yield routes to 1 and 8 are also described. The X(-) = NO(3)(-) complexes [Mn(4)O(3)(NO(3))(O(2)CR)(3)(R'(2)dbm)(3)] (R = Me, R' = H (6); R = Me, R' = Et (7); R = Et, R' = H (12)) represent the first synthesis of the [Mn(4)O(3)(NO(3))](6+) core, which contains an unusual eta(1):mu(3)-NO(3)(-) group. Treatment of known [Mn(4)O(2)(O(2)CEt)(7)(bpy)(2)](ClO(4)) with HNO(3) gives [Mn(4)O(2)(NO(3))(O(2)CEt)(6)(bpy)(2)](ClO(4)) (15) containing a eta(1):eta(1):mu-NO(3)(-) group bridging the two body Mn(III) ions of the [Mn(4)O(2)](8+) butterfly core. Complex 7 x 4CH(2)Cl(2) crystallizes in space group P2(1)2(1)2(1) with (at -168 degrees C) a = 21.110(3) A, b = 22.183(3) A, c = 15.958(2) A, Z = 4, and V = 7472.4(3) A(3). Complex 15 x (3)/(2)CH(2)Cl(2) crystallizes in space group P2(1)/c with (at -165 degrees C) a = 26.025(4) A, b = 13.488(2) A, c = 32.102(6) A, beta = 97.27(1) degrees, Z = 8, and V = 11178(5) A(3). Complex 7 contains a [Mn(4)(mu(3)-O)(3)(mu(3)-NO(3))](6+) core (3Mn(III), Mn(IV)) as seen for previous [Mn(4)O(3)X](6+) complexes. Complex 15 contains a butterfly [Mn(4)(mu(3)-O)(2)](8+) core. (1)H NMR spectra have been recorded for all complexes reported in this work and the various resonances assigned. All complexes retain their structural integrity on dissolution in chloroform and dichloromethane. Magnetic susceptibility (chi(M)) data were collected on 12 in the 5-300 K range in a 10.0 kG (1 T) field. Fitting of the data to the theoretical chi(M) vs T expression appropriate for a [Mn(4)O(3)X](6+) complex of C(3)(v)() symmetry gave J(34) = -23.9 cm(-)(1), J(33) = 4.9 cm(-)(1), and g = 1.98, where J(34) and J(33) refer to the Mn(III)Mn(IV) and Mn(III)Mn(III) pairwise exchange interactions, respectively. The ground state of the molecule is S = 9/2, as found previously for other [Mn(4)O(3)X](6+) complexes. This was confirmed by magnetization data collected at various fields and temperatures. Fitting of the data gave S = 9/2, D = -0.45 cm(-1), and g = 1.96, where D is the axial zero-field splitting parameter.  相似文献   

15.
CuCrO2 and CuCrO2:Mn thin films were prepared on sapphire substrates by chemical solution deposition method. The effects of the annealing temperatures and Mn concentration on the structural, electrical and optical properties were investigated. The X-ray diffraction measurement was used to confirm the c-axis orientation of CuCrO2 and CuCrO2:Mn thin films. The maximum transmittances of the films in the visible region are about 65% with direct band gaps of 3.25 eV. All films showed the p-type conduction and semiconductor behavior. The electrical conductivity decreases rapidly with the increase of Mn content, the maximum of the electrical conductivity of 1.35 × 10−2 S cm−1 is CuCrO2 film deposited at 600 °C temperature in 10−3 Torr vacuum, which is about four orders of magnitude higher than that of the Mn-doped CuCrO2 thin film. The energy band of the samples is constructed based on the grain-boundary scattering in order to investigate the conduction mechanism. Moreover, the samples exhibit a clear ferromagnetism, which was likely ascribed to originating from the double-exchange interaction between the Mn3+ and Cr3+ ions.  相似文献   

16.
Electron paramagnetic resonance (EPR) and optical absorption spectra of Mn2+ ions in different alkali lead tetraborate glasses 90R2B4O7+9.25PbO+0.75MnSO4 (R=Li, Na and K) and 90Li2B4O7+(10-x)PbO+xMnSO4 (x=0.1, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5 and 2 mol%) have been studied. The EPR spectrum of all the glass samples exhibit three resonance signals at g=2.0, 3.3 and 4.3. The resonance signal at g=2.0 is attributed to the Mn2+ ions in an environment close to an octahedral symmetry. The resonance signals at g=3.3 and 4.3 have been attributed to the rhombic symmetry of the Mn2+ ions. The effect of temperature (123-433 K) and the composition dependence of EPR signals have been studied for Mn2+ ions in lithium lead tetraborate glasses. It is interesting to observe that the variation of paramagnetic susceptibility (chi) with temperature obeys Curie-Weiss law. From the slope of 1/chi versus T graph, the Curie constant (C) has been evaluated. The zero-field splitting (zfs) parameter D has been calculated for different alkali lead tetraborate glasses from the intensities of the allowed hyperfine lines. The optical absorption spectrum exhibits three bands. An intense and broad band at lower energy side has been assigned to the spin-allowed (5Eg-->5T2g) transition of Mn3+ ions in an octahedral symmetry. The intense and sharp band and a broad band at higher energy side have been assigned to charge transfer bands. A red shift is observed with increase of alkali ion size. The optical band gap energy (Eopt) decreases, whereas the Urbach energies (DeltaE) increases with increase of Mn content. The theoretical values of optical basicity (Lambdath) of the glasses have also been evaluated.  相似文献   

17.
 The present paper focuses on the characterisation of surface composition and alloying element in-depth distribution of water-atomised Al–Zn–Mg–Cu alloy powders by secondary ion mass-spectrometry and Auger electron spectroscopy. A pronounced segregation of Mg and some impurities (Fe, Ca, S) concurrently with some Zn depletion are observed on the powder surface. The oxide film formed on the powder surface mainly consists of Al and Mg oxides. The film is non-uniform in thickness: rather coarse surface oxide islands coexist with surface areas covered by a thin (<1.8 nm) oxide layer. The extent of surface oxidation is strongly affected by solidification conditions: The average thickness of the surface oxides increases with increasing particle size or with decreasing cooling rate. All alloying elements are homogeneously distributed in the bulk of individual particles. No significant differences in chemical composition between different particles of a given powder are observed. Received November 26, 1999. Revision September 25, 2001.  相似文献   

18.
The (Zn(0.95)Mn(0.05)S)(2)·L (L = hexylamine and octylamine) hybrids show the optimal Mn(2+) luminescence and their thin films were fabricated on the quartz substrate layer by layer by a spin coating method, which revealed the linear relationship of the UV optical absorption and the Mn(2+) luminescence intensity with the layer numbers.  相似文献   

19.
The reaction of Mn(O(2)CPh)(2).2H(2)O and PhCO(2)H in EtOH/MeCN with NBu(n)(4)MnO(4) gives (NBu(n)(4))[Mn(4)O(2)(O(2)CPh)(9)(H(2)O)] (4) in high yield (85-95%). Complex 4 crystallizes in monoclinic space group P2(1)/c with the following unit cell parameters at -129 degrees C: a = 17.394(3) ?, b = 19.040(3) ?, c = 25.660(5) ?, beta = 103.51(1) degrees, V = 8262.7 ?(3), Z = 4; the structure was refined on F to R (R(w)) = 9.11% (9.26%) using 4590 unique reflections with F > 2.33sigma(F). The anion of 4 consists of a [Mn(4)(&mgr;(3)-O)(2)](8+) core with a "butterfly" disposition of four Mn(III) atoms. In addition to seven bridging PhCO(2)(-) groups, there is a chelating PhCO(2)(-) group at one "wingtip" Mn atom and terminal PhCO(2)(-) and H(2)O groups at the other. Complex 4 is an excellent steppingstone to other [Mn(4)O(2)]-containing species. Treatment of 4 with 2,2-diethylmalonate (2 equiv) leads to isolation of (NBu(n)(4))(2)[Mn(8)O(4)(O(2)CPh)(12)(Et(2)mal)(2)(H(2)O)(2)] (5) in 45% yield after recrystallization. Complex 5 is mixed-valent (2Mn(II),6Mn(III)) and contains an [Mn(8)O(4)](14+) core that consists of two [Mn(4)O(2)](7+) (Mn(II),3Mn(III)) butterfly units linked together by one of the &mgr;(3)-O(2)(-) ions in each unit bridging to one of the body Mn atoms in the other unit, and thus converting to &mgr;(4)-O(2)(-) modes. The Mn(II) ions are in wingtip positions. The Et(2)mal(2)(-) groups each bridge two wingtip Mn atoms from different butterfly units, providing additional linkage between the halves of the molecule. Complex 5.4CH(2)Cl(2) crystallizes in monoclinic space group P2(1)/c with the following unit cell parameters at -165 degrees C: a = 16.247(5) ?, b = 27.190(8) ?, c = 17.715(5) ?, beta = 113.95(1) degrees, V = 7152.0 ?(3), Z = 4; the structure was refined on F to R (R(w)) = 8.36 (8.61%) using 4133 unique reflections with F > 3sigma(F). The reaction of 4 with 2 equiv of bpy or picolinic acid (picH) yields the known complex Mn(4)O(2)(O(2)CPh)(7)(bpy)(2) (2), containing Mn(II),3Mn(III), or (NBu(n)(4))[Mn(4)O(2)(O(2)CPh)(7)(pic)(2)] (6), containing 4Mn(III). Treatment of 4 with dibenzoylmethane (dbmH, 2 equiv) gives the mono-chelate product (NBu(n)(4))[Mn(4)O(2)(O(2)CPh)(8)(dbm)] (7); ligation of a second chelate group requires treatment of 7 with Na(dbm), which yields (NBu(n)(4))[Mn(4)O(2)(O(2)CPh)(7)(dbm)(2)] (8). Complexes 7 and 8 both contain a [Mn(4)O(2)](8+) (4Mn(III)) butterfly unit. Complex 7 contains chelating dbm(-) and chelating PhCO(2)(-) at the two wingtip positions, whereas 8 contains two chelating dbm(-) groups at these positions, as in 2 and 6. Complex 7.2CH(2)Cl(2) crystallizes in monoclinic space group P2(1) with the following unit cell parameters at -170 degrees C: a = 18.169(3) ?, b = 19.678(4) ?, c = 25.036(4) ?, beta = 101.49(1) degrees, V = 8771.7 ?(3), Z = 4; the structure was refined on F to R (R(w)) = 7.36% (7.59%) using 10 782 unique reflections with F > 3sigma(F). Variable-temperature magnetic susceptibility studies have been carried out on powdered samples of complexes 2 and 5 in a 10.0 kG field in the 5.0-320.0 K range. The effective magnetic moment (&mgr;(eff)) for 2 gradually decreases from 8.61 &mgr;(B) per molecule at 320.0 K to 5.71 &mgr;(B) at 13.0 K and then increases slightly to 5.91 &mgr;(B) at 5.0 K. For 5, &mgr;(eff) gradually decreases from 10.54 &mgr;(B) per molecule at 320.0 K to 8.42 &mgr;(B) at 40.0 K, followed by a more rapid decrease to 6.02 &mgr;(B) at 5.0 K. On the basis of the crystal structure of 5 showing the single Mn(II) ion in each [Mn(4)O(2)](7+) subcore to be at a wingtip position, the Mn(II) ion in 2 was concluded to be at a wingtip position also. Employing the reasonable approximation that J(w)(b)(Mn(II)/Mn(III)) = J(w)(b)(Mn(III)/M(III)), where J(w)(b) is the magnetic exchange interaction between wingtip (w) and body (b) Mn ions of the indicated oxidation state, a theoretical chi(M) vs T expression was derived and used to fit the experimental molar magnetic susceptibility (chi(M)) vs T data. The obtained fitting parameters were J(w)(b) = -3.9 cm(-)(1), J(b)(b) = -9.2 cm(-)(1), and g = 1.80. These values suggest a S(T) = (5)/(2) ground state spin for 2, which was confirmed by magnetization vs field measurements in the 0.5-50.0 kG magnetic field range and 2.0-30.0 K temperature range. For complex 5, since the two bonds connecting the two [Mn(4)O(2)](7+) units are Jahn-Teller elongated and weak, it was assumed that complex 5 could be treated, to a first approximation, as consisting of weakly-interacting halves; the magnetic susceptibility data for 5 at temperatures >/=40 K were therefore fit to the same theoretical expression as used for 2, and the fitting parameters were J(w)(b) = -14.0 cm(-)(1) and J(b)(b) = -30.5 cm(-)(1), with g = 1.93 (held constant). These values suggest an S(T) = (5)/(2) ground state spin for each [Mn(4)O(2)](7+) unit of 5, as found for 2. The interactions between the subunits are difficult to incorporate into this model, and the true ground state spin value of the entire Mn(8) anion was therefore determined by magnetization vs field studies, which showed the ground state of 5 to be S(T) = 3. The results of the studies on 2 and 5 are considered with respect to spin frustration effects within the [Mn(4)O(2)](7+) units. Complexes 2 and 5 are EPR-active and -silent, respectively, consistent with their S(T) = (5)/(2) and S(T) = 3 ground states, respectively.  相似文献   

20.
Porous spinel ferrites Mn(1-x)Zn(x)Fe(2)O(4) (0 ≤ x ≤ 0.8) are synthesized by a simple sol-gel method with egg white. All samples exhibit porous morphologies and large BET surface area (S(BET)). The substitution of Zn(2+) affects the magnetic properties of ferrites and the adsorption properties of methylene blue (MB) on ferrites, obviously. The saturation magnetization (Ms) of Mn(1-x)Zn(x)Fe(2)O(4) increases before x=0.4, and decreases with further increase of Zn(2+) substitution. This can be ascribed to the changes of the cationic distribution and the variation of spin arrangement in A-site and B-site of spinel structure. All samples show high adsorption capacity and the removal efficiencies of MB reach up to >90% within 3 h. The Zn(2+) substitution accelerates the adsorption rate and capacity of MB on Mn(1-x)Zn(x)Fe(2)O(4). The quickest adsorption occurred at x=0.2 and the largest adsorption capacity occurred at x=0.8.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号