首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Influence of unsteady wake on a turbulent separation bubble   总被引:1,自引:0,他引:1  
 An experimental study was made of turbulent separated and reattaching flow over a blunt body, where unsteady wake was generated by a spoked-wheel type of wake generator with cylindrical rods. The influence of unsteady wake was scrutinized by altering the rotation direction (clockwise and counter-clockwise) and the normalized passing frequency (0 ≤ St H  ≤ 0.20). The Reynolds number based on the cylindrical rod was Re d =375. A phase-averaging technique was employed to characterize the unsteady wake. The effect of different rotation directions, which gave a significant reduction of x R , was examined in detail. The wall pressure fluctuations on the blunt body were analyzed in terms of the spectrum and the coherence. Received: 15 January 2001 / Accepted: 17 July 2001  相似文献   

2.
 Laboratory measurements are made of flow over a blunt flat plate of finite thickness, which is placed in a pulsating free stream, U=U o (1+A o cos 2πf p t). Low turbulence-intensity wind tunnel experiments are conducted in the ranges of St p≤1.23 and A o ≤0.118 at Re H=560. Pulsation is generated by means of a woofer speaker. Variations of the time-mean reattachment length x R as functions of St p and A o are scrutinized by using the forward-time fraction and surface pressure distributions (C p). The shedding frequency of large-scale vortices due to pulsation is measured. Flow visualizations depict the behavior of large-scale vortices. The results for non-pulsating flows (A o =0) are consistent with the published data. In the lower range of A o , as St p increases, x R attains a minimum value at a particular pulsation frequency. For large A o , the results show complicated behaviors of x R. For St p≥0.80, changes in x R are insignificant as A o increases. The shedding frequency of large-scale vortices is locked-in to the pulsation frequency. A vortex-pairing process takes place between two neighboring large-scale vortices in the separated shear layer. Received: 30 August 1999/Accepted: 17 April 2000  相似文献   

3.
Large eddy simulation (LES) is carried out to investigate the turbulent boundary-layer flows over a hill-shaped model with a steep or relatively moderate slope at moderately high Reynolds numbers (Re = O(103)) defined by the hill height and the velocity at the hill height. The study focuses on the effects of surface roughness and curvature. For Sub-grid Scale (SGS) modeling of LES, both the dynamic Smagorinsky model (DSM) and the dynamic mixed model (DMM) are applied. The behavior of the separated shear layer and the vortex motion are affected by the oncoming turbulence, such that the shear layer comes close to the ground surface, or the size of a separation region becomes small because of the earlier instability of the separated shear layer. Appropriate measures are required to generate the inflow turbulence. The methods of Lund et al. (J. Comput. Phys., 140:233–258, 1998) and Nozawa and Tamura (J. Wind Eng. Ind. Aerodyn., 90:1151–1162, 2002; The 4th European and African Conference on Wind Engineering, 1–6, 2005) are employed to simulate the smooth- and rough-wall turbulent boundary layers in order to generate time-sequential data of inflow turbulence. This paper discusses the unsteady phenomena of the wake flows over the smooth and rough 2D hill-shaped obstacles and aims to clarify the roughness effects on the flow patterns and the turbulence statistics distorted by the hill. Numerical validation is conducted by comparing the simulation results with wind tunnel experiment data for the same hill shape at almost the same Re. The applicability of DSM and DMM are discussed, focusing on the recirculation region behind a steep hill.  相似文献   

4.
This study investigates the influence on the oscillating characteristics of a cavity shear layer by introducing either a sloped bottom or a flow path modifier at the bottom of the cavity. All the experiments are performed in a recirculating water channel. The laser Doppler velocimetry system and the laser sheet technique are employed to perform the quantitative velocity measurements and the qualitative flow visualization, respectively. The Reynolds number, based on the momentum thickness at the upstream edge of the cavity, is kept at about Re θ 0=194 ± 3.4. It is found that, in addition to the feedback effect, the upstream moving part of the recirculating flow inside the cavity also plays an important role in changing the oscillating characteristics of the unstable shear layer. As the bottom of the cavity is either negatively or positively sloped, the oscillating characteristics of the cavity shear layer are modified to different extents. Significant reduction of the oscillating amplitude within the cavity is found while the bottom slope increases up to d/L=± 2/5. As the bottom slope further increases up to d/L=± 1/2, the self-excited oscillation is completely suppressed. In addition, the ability to suppress the self-excited oscillation by the negative bottom slopes is superior to that in the case of a positive bottom slope. Depending upon the fence locations, the upstream moving part of the recirculating flow will perturb the unstable shear layer at different x/L locations, leading to different oscillating amplitudes. The ability to promote the enlarged oscillating amplitude of the unstable shear layer is better for a fence inclined at a positive angle than for one at a negative angle. Received: 31 May 2000/Accepted: 11 January 2001  相似文献   

5.
Measurements and scaling of wall shear stress fluctuations   总被引:2,自引:0,他引:2  
Measurements of velocity and wall shear stress fluctuations were made in an external turbulent boundary layer developed over a towed surface-piercing flat plate. An array of eight flush-mounted wall shear stress sensors was used to compute the space-time correlation function. A methodology for in situ calibration of the sensors for ship hydrodynamic applications is presented. The intensity of the wall shear stress fluctuations, τ rms/τ avg was measured as 0.25 and 0.36 for R θ =3,150 and 2,160 respectively. The probability density is shown to exhibit positive skewness, and lack of flow reversals at the wall. Correlations between velocity and wall shear stress fluctuations are shown to collapse with outer boundary layer length and velocity scales, verifying the existence of large-scale coherent structures which convect and decay along the wall at an angle of inclination varying from 10 to 13° over the range of Reynolds numbers investigated. The wall shear stress convection velocity determined from narrow band correlation measurements is shown to scale with outer variables. The space-time correlation of the wall shear is shown to exhibit a well-defined convective ridge, and to decay 80% over approximately for R θ =3,150. Published online: 7 November 2002  相似文献   

6.
The influence of the chord-to-thickness ratio (c/t) on the spatial characteristics of the separated shear layer over a blunt plate and the leading-edge vortices embedded in the separated shear layer was studied extensively using planar particle image velocimetry (PIV). Three systems corresponding to different shedding modes were chosen for the comparative study: c/t=3, 6 and 9. The Reynolds number based on the plate's thickness (t) was Ret=1×103. A gigapixel CCD camera was used to acquire images with a spatial resolution of 0.06t×0.06t in the measurement range of 9.5t×4.5t. Distributions of statistical quantities, such as the streamline pattern, streamwise velocity fluctuation intensity, shear stress and reverse flow intermittency, showed that the separated shear layer in the system with c/t=3 did not reattach to the plate's surface, while the near‐wake behind the trailing edge was highly unstable because the energetic leading-edge vortices were shed into the wake. The separated shear layer of the system with c/t=6 periodically reattached to the plate's surface, which resulted in intensified fluctuations of the near wake behind the trailing edge. In the longest system (c/t=9), the separated shear layer always reattached to the plate's surface far upstream from the trailing edge, which did not induce large fluctuations of the near wake. Furthermore, the proper orthogonal decomposition (POD) was extensively employed to filter the original velocity fields spatially to identify the large-scale vortices immersed in the separated shear layer easily. The distribution of the v-v correlation coefficients of the spatially filtered flow fields reflected the organized large-scale vortices in the three systems. The number of alternations of the positive and negative correlation coefficients across the flow field were determined to be 1, 2 and 3 for the systems with c/t=3, 6 and 9, respectively; this is in agreement with the shedding mode of each system. The distribution of the swirling strength of the separated shear layer accurately determined the positions and structures of the large-scale vortices formed above the plate surface.  相似文献   

7.
A transitional separation bubble on the suction side of an SD7003 airfoil is considered. The transition process that forces the separated shear layer to reattach seems to be governed by Kelvin–Helmholtz instabilities. Large scale vortices are formed due to this mechanism at the downstream end of the bubble. These vortices possess a three-dimensional structure and detach from the recirculation region, while other vortices are formed within the bubble. This separation of the vortex is a highly unsteady process, which leads to a bubble flapping. The structure of these vortices and the flapping of the separation bubble due to these vortices are temporally and spatially analyzed at angles of attack from 4° to 8° and chord-length based Reynolds numbers Re c = 20,000–60,000 using time-resolved PIV measurements in a 2D and a 3D set-up, i.e., stereo-scanning PIV measurements are done in the latter case. These measurements complete former studies at a Reynolds number of Re c = 20,000. The results of the time-resolved PIV measurements in a single light-sheet show the influence of the angle of attack and the Reynolds number. The characteristic parameters of the separation bubble are analyzed focusing on the unsteadiness of the separation bubble, e.g., the varying size of the main recirculation region, which characterizes the bubble flapping, and the corresponding Strouhal number are investigated. Furthermore, the impact of the freestream turbulence is investigated by juxtaposing the current and former results. The stereo-scanning PIV measurements at Reynolds numbers up to 60,000 elucidate the three-dimensional character of the vortical structures, which evolve at the downstream end of the separation bubble. It is shown that the same typical structures are formed, e.g., the c-shape vortex and the screwdriver vortex at each Reynolds number and angle of attack investigated and the occurrence of these patterns in relation to Λ-structures is discussed. To evidence the impact of the freestream turbulence, these results are compared with findings of former measurements.  相似文献   

8.
This paper demonstrates the feasibility of laser Schlieren system in studying unsteady shock motion in important flow phenomena such as shock wave/boundary layer interactions. Time-dependent voltage signals from multichannel measurements reveal important aspects of flow behavior such as amplitude and velocity of shock motion, frequency content, and cross-correlation functions in a very straightforward way. Tests were performed on a Halis axisymmetric configuration in a hypersonic flow with air and CO2. Received: 8 August 2001 / Accepted: 8 November 2001  相似文献   

9.
Rheological and mechanical properties of aqueous mono-disperse silica suspensions (Ludox? HS40) are investigated as a function of particle volume fraction (ϕ p ranging from 0.22 to 0.51) and water content, using shear rate tests, oscillatory methods, indentation and an ultrasonic technique. As the samples are progressively dried, four regimes are identified; they are related to the increasing particle content and the existence and behaviour of the electrical double layer (EDL) around each particle. For 0.22 ≤ ϕ p ≤ 0.30), the suspensions are stable due to the strong electrostatic repulsion between particles and show Newtonian behaviour (I). As water is removed, the solution pH decreases and the ionic strength increases. The EDL thickness therefore slowly decreases, and screening of the electrostatic repulsion increases. For 0.31 ≤ ϕ p ≤ 0.35, the suspensions become turbid and exhibit viscoelastic (VE) shear thinning behaviour (II), as they progressively flocculate. For 0.35 ≤ ϕ p ≤ 0.47, the suspensions turn transparent again and paste-like, with VE shear thinning behaviour and high elastic modulus (III). At higher particle concentration, the suspensions undergo a glass transition and behave as an elastic brittle solid (IV, ϕ p = 0.51).  相似文献   

10.
The adverse pressure gradient induced by a surface-mounted obstacle in a turbulent boundary layer causes the approaching flow to separate and form a dynamically rich horseshoe vortex system (HSV) in the junction of the obstacle with the wall. The Reynolds number of the flow (Re) is one of the important parameters that control the rich coherent dynamics of the vortex, which are known to give rise to low-frequency, bimodal fluctuations of the velocity field (Devenport and Simpson, J Fluid Mech 210:23–55, 1990; Paik et al., Phys Fluids 19:045107, 2007). We carry out detached eddy simulations (DES) of the flow past a circular cylinder mounted on a rectangular channel for Re = 2.0 × 104 and 3.9 × 104 (Dargahi, Exp Fluids 8:1–12, 1989) in order to systematically investigate the effect of the Reynolds number on the HSV dynamics. The computed results are compared with each other and with previous experimental and computational results for a related junction flow at a much higher Reynolds number (Re = 1.15 × 105) (Devenport and Simpson, J Fluid Mech 210:23–55, 1990; Paik et al., Phys Fluids 19:045107, 2007). The computed results reveal significant variations with Re in terms of the mean-flow quantities, turbulence statistics, and the coherent dynamics of the turbulent HSV. For Re = 2.0 × 104 the HSV system consists of a large number of necklace-type vortices that are shed periodically at higher frequencies than those observed in the Re = 3.9 × 104 case. For this latter case the number of large-scale vortical structures that comprise the instantaneous HSV system is reduced significantly and the flow dynamics becomes quasi-periodic. For both cases, we show that the instantaneous flowfields are dominated by eruptions of wall-generated vorticity associated with the growth of hairpin vortices that wrap around and disorganize the primary HSV system. The intensity and frequency of these eruptions, however, appears to diminish rapidly with decreasing Re. In the high Re case the HSV system consists of a single, highly energetic, large-scale necklace vortex that is aperiodically disorganized by the growth of the hairpin mode. Regardless of the Re, we find pockets in the junction region within which the histograms of velocity fluctuations are bimodal as has also been observed in several previous experimental studies.  相似文献   

11.
Effect of local forcing on a turbulent boundary layer   总被引:6,自引:0,他引:6  
An experimental study is performed to analyze flow structures behind local suction and blowing in a flat-plate turbulent boundary layer. The local forcing is given to the boundary layer flow by means of a sinusoidally oscillating jet issuing from a thin spanwise slot at the wall. The Reynolds number based on the momentum thickness is about Re θ =1700. The effects of local forcing are scrutinized by altering the forcing frequency (0.011 ≤ f+≤ 0.044). The forcing amplitude is fixed at A 0=0.4. It is found that a small local forcing reduces the skin friction and the skin friction reduction increases with the forcing frequency. A phase-averaging technique is employed to capture the large-scale vortex evolution. An organized spanwise vortical structure is generated by the local forcing. The cross-sectional area of vortex and the time fraction of vortex are examined by changing the forcing frequency. An investigation of the random fluctuation components reveals that turbulent energy is concentrated near the center of vortical structures. Received: 17 March 2000/Accepted: 3 April 2001  相似文献   

12.
Tomographic and time resolved PIV measurements were performed to examine the 3D flow topology and the flow dynamic above the upper surface of a low-aspect ratio cylinder at Re ≈ 1 ×  105. This generic experiment is of fundamental interest because it represents flow features which are relevant to many applications such as laminar separation bubbles and turbulent reattachment. At Re  ≈ 1 × 105, laminar separation bubbles arise on the side of the cylinder. Furthermore, on the top of the cylinder a separation with reattachment is of major interest. The tomographic PIV measurement, which allows to determine all three velocity components in a volume instantaneously, was applied to examine the flow topology and interaction between the boundary layer and wake structures on the top of the finite cylinder. In the instantaneous flow fields the tip vortices and the recirculation region becomes visible. However, it is also observed that the flow is quite unsteady due to the large separation occurring on the top of the cylinder. In order to study the temporal behaviour of the separation, time resolved PIV was applied. This technique allows capturing the dynamic processes in detail. The development of vortices in the separated shear layer is observed and in addition regions with different dominant frequencies are identified.  相似文献   

13.
A thre-dimensional direct numerical simulation is combined with a laboratory study to describe the turbulent flow in an enclosed annular rotor-stator cavity characterized by a large aspect ratio G = (b − a)/h = 18.32 and a small radius ratio a/b = 0.152, where a and b are the inner and outer radii of the rotating disk and h is the interdisk spacing. The rotation rate Ω considered is equivalent to the rotational Reynolds number Re = Ωb 2/ν= 9 .5 × 104 (ν the kinematic viscosity of water). This corresponds to a value at which experiment has revealed that the stator boundary layer is turbulent, whereas the rotor boundary layer is still laminar. Comparisons of the computed solution with velocity measurements have given good agreement for the mean and turbulent fields. The results enhance evidence of weak turbulence by comparing the turbulence properties with available data in the literature (Lygren and Andersson, J Fluid Mech 426:297–326, 2001). An approximately self-similar boundary layer behavior is observed along the stator. The wall-normal variations of the structural parameter and of characteristic angles confirm that this boundary layer is three-dimensional. A quadrant analysis (Kang et al., Phys Fluids 10:2315–2322, 1998) of conditionally averaged velocities shows that the asymmetries obtained are dominated by Reynolds stress-producing events in the stator boundary layer. Moreover, Case 1 vortices (with a positive wall induced velocity) are found to be the major source of generation of special strong events, in agreement with the conclusions of Lygren and Andersson (J Fluid Mech 426:297–326, 2001).  相似文献   

14.
PIV observations in a shear layer have been used to identify and characterize the discrete large-scale coherent motions (LSCMs) in the nominally self-preserving region: xo ≈ 450–610, of a shear layer. The LSCMs are given an objective definition wherein their centers are the (swirling flow pattern) nodes of the velocity-vector field as seen by an observer in the Galilean reference frame translating at an appropriately defined reference velocity. The statistical attributes of size, lateral location, and separation between these coherent motions (that exist in a single image) as well as their characteristic vorticity magnitude 〈ωmax〉 are reported.  相似文献   

15.
A three-dimensional separated flow behind a swept, backward-facing step is investigated by means of DNS for Re H = C H/ν = 3000 with the purpose to identify changes in the statistical turbulence structure due to a variation of the sweep angle α from 0° up to 60°. With increasing sweep angle, the near-wall turbulence structure inside the separation bubble and downstream of reattachment changes due to the presence of an edge-parallel mean flow component W. Turbulence production due to the spanwise shear ∂W/∂y at the wall becomes significant and competes with the processes caused by impingement of the separated shear-layer. Changes due to a sweep angle variation can be interpreted in terms of two competing velocity scales which control the global budget of turbulent kinetic energy: the step-normal component U = C cosα throughout the separated flow region and the velocity difference C across the entire shear-layer downstream of reattachment. As a consequence, the significance of history effects for the development into a two-dimensional boundary layer decreases with increasing sweep angle. For α ≥50°, near-wall streaks tend to form inside the separated flow region. Received 7 November 2000 and accepted 9 July 2002 Published online 3 December 2002 RID="*" ID="*" Part of this work was funded by the Deutsche Forschungsgemeinschaft within Sfb 557. Computer time was provided by the Konrad-Zuse Zentrum (ZIB), Berlin. Communicated by R.D. Moser  相似文献   

16.
This experimental investigation deals with transition phenomena of a separated boundary layer under unsteady inlet flow conditions. The main purpose of this investigation is to understand the influence of the rotor-stator interaction in turbomachinery on the subsequent, highly loaded boundary layer. The research project is divided into two phases. In the first phase, which has been completed recently, only the variation of mean velocity caused by upstream blades was simulated in the experiments while the free-stream turbulence intensity was retained at a constant low level. The experiments are carried out in an Eifel-type wind tunnel to investigate the laminar separated boundary layer of a flat plate under oscillating inlet conditions. The adverse pressure gradient, similar to that of turbomachines, is generated by the contoured upper wall. The unsteadiness is produced by a rotating flap located downstream of the test section. The reduced frequency, the amplitude and the mean Reynolds number are varied to simulate the conditions prevailing in turbomachines. In addition to the Kelvin–Helmholtz instability of the separated shear layer, a lower frequency instability was observed. This is frequently referred to as `free shear layer flapping' and results in two distinctly different ways of re-attachment, depending primarily on the Reynolds number. For low momentum thickness Reynolds numbers at the separation point, large-scale vortices locked to the frequency of the unsteady main flow are identified. They originate nearly at the top of the separation bubble and are ejected downstream. A fully turbulent boundary layer develops after these vortices mix out. For higher Reynolds numbers, transition is completed within a short length of the free shear layer and there-attachment region. The characteristic momentum thickness Reynolds number separating these two regimes in unsteady flow is about 125. The Strouhal number (reduced frequency) does not appear to have any significant effect. Based on the experimental results, this behaviour is discussed in some detail. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
 The time-dependent transformation of an ionically charged lamellar phase (L α-phase) into a vesicle phase under the influence of shear is investigated using rheological and conductivity measurements. The L α-phase consists of the zwitterionic surfactant tetradecyldimethylaminoxide (C14DMAO), hexanol, oxalic acid and water. The experiments were carried out on the L α-phase in a well defined state. It was prepared by a special route from the neighbouring L 3-phase that consists of 100 mM C14DMAO, 250 mM hexanol and 5 mM oxalicdiethylester (OEE). The OEE hydrolyses in the L 3 -phase to oxalic acid and ethanol. The result is a virgin L α-phase which consists of stacked bilayers and which has not been exposed to shear. When this low-viscous phase is subjected to shear it is transformed into a highly viscous vesicle phase. The transformation of the L α-phase into vesicles under constant shear was monitored by recording the viscosity and conductivity with time. It is observed that at least three different time constants can be distinguished in the transformation process. The conductivity passes through a minimum (τ1) in the direction of shear. The viscosity first passes through a minimum (τ2) and then over a maximum (τ3). It is concluded that τ1 belongs to the complete alignment of the bilayer parallel to the wall, τ2 to the beginning of the break-up of the bilayers to the vesicles and τ3 to the complete transformation of the L α- to the vesicle phase. When the shear rate was varied, it was noted that the product of the time constants and shear is constant. Received: 30 June 1999/Accepted: 30 August 1999  相似文献   

18.
Shear layers of a circular cylinder with rotary oscillation   总被引:1,自引:0,他引:1  
The behavior of the separated shear layers and the near wake of a circular cylinder with small-amplitude rotary oscillations (Ω1 = 0.05−0.15 for f f/f o ≤ 1.25) were investigated experimentally at Re = 3,700. Measurements of an unforced cylinder were also made for 2,000 ≤ Re ≤ 10,000 to better understand the effects of rotary oscillations. The results show that the shear-layer vortices formed closer to the cylinder and the distance separating them was found to decrease with cylinder oscillations. The shear-layer frequency, however, increased with increasing forcing frequency f f. The formation-region length l f decreased significantly with increasing f f while decreased to a lesser extent with increasing normalized oscillation amplitude Ω1. The shear layer also diffused to a length L d larger than that of an unforced cylinder, while the l f-L d-Strouhal frequency offsetting mechanism was generally maintained. The near wake was of lower momentum compared to an unforced cylinder, and the transverse velocity fluctuations associated with the unforced vortex-shedding frequency f o always presented a local peak at f f/f o = 0.5, regardless of Ω1 tested.  相似文献   

19.
Dynamics of hairpin vortices generated by a mixing tab in a channel flow   总被引:3,自引:0,他引:3  
To better understand mixing by hairpin vortices, time-series particle image velocimetry (PIV) was applied to the wake of a trapezoidal-shaped passive mixing tab mounted at the bottom of a square turbulent channel (Re h =2,080 based on the tab height). Instantaneous velocity/vorticity fields were obtained in sequences of 10 Hz in the tab wake in the center plane (xy) and in a plane (xz) parallel to the wall. Periodically-shed hairpin vortices were clearly identified and seen to rise as they advected downstream. Experimental evidence shows that the vortex-induced ejection of the near-wall viscous fluid to the immediate upstream is important to the dynamics of hairpin vortices. It can increase the strength of the hairpin vortices in the near tab region and cause generation of secondary hairpin vortices further downstream when the hairpin heads are farther away from the wall. Measurements also reveal the existence of a type of new secondary vortice with the opposite-sign spanwise vorticity. The distribution of vortex loci in the xy plane shows that the hairpin vortices and the reverse vortices are spatially segregated in distinct layers. Turbulence statistics, including mean velocity profiles, Reynolds stresses, and turbulent kinetic energy dissipation rate distributions, were obtained from the PIV data. These statistical quantities clearly reveal imprints of the identified vortex structures and provide insight into mixing effectiveness. Received: 24 February 2000/Accepted: 24 October 2000  相似文献   

20.
Previous studies have shown that Unsteady Reynolds-Averaged Navier–Stokes (URANS) computations are able to reproduce the vortex shedding behind a backward-facing step. The aim of the present work is to investigate not only the quantitative predictions of the URANS methodology concerning the characteristic frequencies, but also the amplitude of the energy of the resolved eddies, by using the Elliptic Blending Reynolds Stress Model. This innovative low-Reynolds number second moment closure reproduces the non-viscous, non-local blocking effect of the wall on the Reynolds stresses, and it is compared to the standard k − ε and LRR models using wall-functions. Consistent with previous studies, in the 2D computations shown in the present article, the vortex shedding is captured with the correct Strouhal number, when second moment closures are used. To complete these previous analyses, we particularly focus here on the energy contained in the unsteady, resolved part and its dependency on the numerical method. This energy is less than 5% of the total energy and is strongly dependent on the mesh. Using a refined mesh, surprisingly, a steady solution is obtained. It is shown that this behaviour can be linked to the very small spatial oscillations at the step corner, produced by numerical dispersion, which act as perturbations that are sufficient to excite the natural mode of the shear layer, when the local Peclet number, comparing convection and diffusion effects, is high enough. This result suggests that URANS is not appropriate to quantitatively predict the amplitude of the large-scale structures developing in separated shear-layers, and that URANS results must be interpreted with care in terms of temporal variations of forces, temperatures, etc., in industrial applications using marginally fine meshes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号