首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Belén Batanero 《Tetrahedron》2008,64(8):1834-1838
Electron transfer processes take place during the cathodic reduction, under an argon atmosphere, of different α-dicarbonyl substrates. Carboxylic acids or methylene diesters are obtained from benzil or furil after electron transfer to the oxygen in the air, during the workup, or after electron transfer to the solvent. Involving an electron transfer to dichloromethane, 2-hydroxy-2-hydroxymethyl-2H-acenaphtylen-1-one or benzo[1,3]dioxin-8-one are formed when acenaphthenequinone or 1,2-cyclohexanedione are, respectively, reduced.  相似文献   

2.
The fluorescence of 1-benzyl-1,4-dihydronicotinamide (BNAH) is quenched by a variety of electron acceptors. The dependence of the rate constant of the quenching process on the electrochemical reduction potentials of the quenchers corresponds with that expected for quenching by an electron transfer mechanism in which BNAH acts as an electron donor with a one electron oxidation potential of 0.76 ± 0.02 V (in acetonitrile relative to the saturated calomel electrode).From this oxidation potential, and the reduction potentials of a number of substrates reported to be reduced by BNAH, the rates of thermal one-electron transfer from BNAH to these substrates were estimated via the Rehm-Weller relation for outersphere one-electron transfer. These calculated rates are many orders of magnitude lower than experimental rates reported for the overall reduction processes. This seems to exclude outersphere one-electron transfer as an intermediate step in such reductions.  相似文献   

3.
Human neutrophil elastase (HNE) is a uniquely destructive serine protease with the ability to unleash a wave of proteolytic activity by destroying the inhibitors of other proteases. Although this phenomenon forms an important part of the innate immune response to invading pathogens, it is responsible for the collateral host tissue damage observed in chronic conditions such as chronic obstructive pulmonary disease (COPD), and in more acute disorders such as the lung injuries associated with COVID-19 infection. Previously, a combinatorially selected activity-based probe revealed an unexpected substrate preference for oxidised methionine, which suggests a link to oxidative pathogen clearance by neutrophils. Here we use oxidised model substrates and inhibitors to confirm this observation and to show that neutrophil elastase is specifically selective for the di-oxygenated methionine sulfone rather than the mono-oxygenated methionine sulfoxide. We also posit a critical role for ordered solvent in the mechanism of HNE discrimination between the two oxidised forms methionine residue. Preference for the sulfone form of oxidised methionine is especially significant. While both host and pathogens have the ability to reduce methionine sulfoxide back to methionine, a biological pathway to reduce methionine sulfone is not known. Taken together, these data suggest that the oxidative activity of neutrophils may create rapidly cleaved elastase “super substrates” that directly damage tissue, while initiating a cycle of neutrophil oxidation that increases elastase tissue damage and further neutrophil recruitment.  相似文献   

4.
Proton-coupled electron transfer (PCET), a class of formal hydrogen atom transfer (HAT) reactions, is of widespread interest because it is implicated in a broad range of chemical and biochemical processes. PCET is typically differentiated from HAT by the fact that it occurs when a proton and electron are transferred between different sets of molecular orbitals. Previous theoretical work predicted that hydrogen bonding between reactants is a necessary but not sufficient condition for H exchanges to take place by PCET. This implies that HAT is the only mechanism for H exchange between two carbon atoms. In this work, we present computational results that show that the H exchange in the tert-butylperoxyl/phenol couple, a prototypical antioxidant exchange reaction, occurs by PCET and that the transfer of the electron can occur via an oxygen lone pair-ring pi overlap. We then show that the H exchange in a model for the tyrosyl/tyrosine couple, which is implicated in ribonucleotide reductase chemistry, occurs via PCET and that one path for the electron transfer is provided by a strong pi-stacking interaction. Finally, we show that a pi-stacking interaction in the benzyl/toluene couple, a system in which there is no H-bonding, can result in this exchange occurring via PCET to some extent. Collectively, these results indicate that PCET reactions are not unique to systems that can engage in H-bonding and that lone pair-pi and pi-pi interactions in these systems may be more important than previously understood.  相似文献   

5.
Carbonaceous materials can accelerate extracellular electron transfer for the biotransformation of many recalcitrant, redox-sensitive contaminants and have received considerable attention in fields related to anaerobic bioremediation. As important electron shuttles(ESs), carbonaceous materials effectively participate in redox biotransformation processes, especially microbially-driven Fe reduction or oxidation coupled with pollutions transformation and anaerobic fermentation for energy and by-pro...  相似文献   

6.
The modification of cerium dioxide with nanoscale metal clusters is intensely researched for catalysis applications, with gold, silver, and copper having been particularly well studied. The interaction of the metal cluster with ceria is driven principally by a localised interaction between a small number of metal atoms (as small as one) and the surface and understanding the fundamentals of the interaction of metal atoms with ceria surfaces is therefore of great interest. Much attention has been focused on the interaction of metals with the (111) surface of ceria, since this is the most stable surface and can be grown as films, which are probed experimentally. However, nanostructures exposing other surfaces such as (110) show high activity for reactions including CO oxidation and require further study; these nanostructures could be modified by deposition of metal atoms or small clusters, but there is no information to date on the atomic level details of metal-ceria interactions involving the (110) surface. This paper presents the results of density functional theory (DFT) corrected for on-site Coulomb interactions (DFT+U) calculations of the adsorption of a number of different metal atoms at an extended ceria (110) surface; the metals are Au, Ag, Cu, Al, Ga, In, La, Ce, V, Cr, and Fe. Upon adsorption all metals are oxidised, transferring electron(s) to the surface, resulting in localised surface distortions. The precise details depend on the identity of the metal atom. Au, Ag, Cu each transfer one electron to the surface, reducing one Ce ion to Ce(3+), while of the trivalent metals, Al and La are fully oxidised, but Ga and In are only partially oxidised. Ce and the transition metals are also partially oxidised, with the number of reduced Ce ions possible in this surface no more than three per adsorbed metal atom. The predicted oxidation states of the adsorbed metal atoms should be testable in experiments on ceria nanostructures modified with metal atoms.  相似文献   

7.
The method developed and introduced here enables for the first time (to the authors’ knowledge), a quantitative assessment of the interaction of SmI2 with substrates prior to the electron transfer stage. As a proof of concept, equilibrium constants for some model substrates including carbonyl compounds and aromatic nuclei are reported here. In addition, the first equilibrium constants with some common ligands were also determined. The equilibrium constants range from approximately 0.07 m −1 for diisopropyl ketone to 2500 m −1 for hexamethylphosphoramide (HMPA). It is shown that the data acquired by this method, which is based on the concept of shift reagents, can shed light on the most intimate details of the reaction mechanism, and this method is a useful tool for planning a synthetic process.  相似文献   

8.
This paper reports on extensive molecular dynamics simulations (about 40 ns in total) in both the reduced and the oxidized states of Ferredoxin from Cyanobacterium Anabaena PCC7119. These calculations have provided us with the free energy profile of the phi(47) backbone angle which controls the "CO in" to "CO out" transition of Cys46 in the reduced and oxidized Fd7119. Our main motivation has been to identify the time scales involved in the reduction of Fd and single out the amino acid residues crucially affecting the conformational change and, thus, electron transfer. The free energy profiles obtained in this study are relevant to electron transfers in the PSI/Fd7119 and Fd7119/FNR complexes. Our findings based on hydrated ferredoxin simulations are that activated processes are to occur in the protein during electron transfer to and from ferredoxin. The relative stability and the activation barrier of the "CO in" to "CO out" transition can be modulated by the distance between the Ser47 and the Glu94 residues. In our calculations, for short distances, the "CO in" state is favored in the reduced form, whereas for large distances, the "CO out" state becomes increasingly favored. Accordingly, conformational changes in Fd7119 when bound to PSI or FNR can have crucial effects on the kinetics of the electron transfer. Our simulations also show that the hydrogen bond between between Ser47(OG) and Cys46(O) is essential to lock in the "CO out" state. This finding explains why only the Ser47Thr Fd7119 mutant sustains electron transfer activity, as only residues serine and threonine can form a specific hydrogen bond with Cys46(O). Finally, our simulations predict that Phe65 has a large probability of being in close contact with the Cys46(O) at the top of the conformational free energy barrier. This carbonyl/phenyl ring interaction can then facilitate the de-localization of the Fd's electron toward the Pi orbitals of Phe65 aromatic ring which is thought to be crucial to the Fd7119/FNR electron transfer  相似文献   

9.
Chemical reaction systems are dynamical systems that arise in chemical engineering and systems biology. In this work, we consider the question of whether the minimal (in a precise sense) multistationary chemical reaction networks, which we propose to call ‘atoms of multistationarity,’ characterize the entire set of multistationary networks. Our main result states that the answer to this question is ‘yes’ in the context of fully open continuous-flow stirred-tank reactors (CFSTRs), which are networks in which all chemical species take part in the inflow and outflow. In order to prove this result, we show that if a subnetwork admits multiple steady states, then these steady states can be lifted to a larger network, provided that the two networks share the same stoichiometric subspace. We also prove an analogous result when a smaller network is obtained from a larger network by ‘removing species.’ Our results provide the mathematical foundation for a technique used by Siegal- Gaskins et al. of establishing bistability by way of ‘network ancestry.’ Additionally, our work provides sufficient conditions for establishing multistationarity by way of atoms and moreover reduces the problem of classifying multistationary CFSTRs to that of cataloging atoms of multistationarity. As an application, we enumerate and classify all 386 bimolecular and reversible two-reaction networks. Of these, exactly 35 admit multiple positive steady states. Moreover, each admits a unique minimal multistationary subnetwork, and these subnetworks form a poset (with respect to the relation of ‘removing species’) which has 11 minimal elements (the atoms of multistationarity).  相似文献   

10.
This paper reports the results of the research on the interaction between the highly active cytochrome b(6)f complex and plastocyanin, both isolated from the same source - spinachia oleracea plants. An equilibrium constant K between the cytochrome f of the cytochrome b(6)f complex and plastocyanin has been estimated by two independent spectroscopic techniques: steady-state absorption spectroscopy and stopped-flow. The second-order rate constants k2 for forward and backward electron transfer between cytochrome f and plastocyanin have been found between 1.4-2 x 10(7) and 8-10 x 10(6) M(-1)s(-1), respectively, giving the value of an equilibrium constant of about 2+/-0.4 or a difference in redox potential between plastocyanin and cytochrome f of cytochrome b(6)f complex of ca. 17 mV. The value of K=1.7+/-0.3 has been estimated from steady-state experiments in which the initial and final concentrations of participating components after mixing have been estimated via differential spectra analysis or spectra deconvolution. We propose a method of evaluation of the final plastocyanin concentration after the electron transfer reaction between cytochrome bf complex and plastocyanin that overcomes the interference by the strong chlorophyll absorption in the spectral region where oxidised plastocyanin has its low extinction absorption band. The data from both experiments, in the system devoid of quinol being the electron donor to cytochrome b(6), suggest that in case of electron transfer from cytochrome f to plastocyanin electron transfer can either bypass cytochrome f or the Rieske iron-sulfur protein can be reduced prior to its movement to the quinol binding site of cytochrome b(6). The role of the Rieske protein in forward and backward electron transfer reactions is discussed.  相似文献   

11.
In protein-folding studies it is often required to differentiate a system with only two-states, namely the native (N) and unfolded (U) forms of the protein present at any condition of the solvent, from a situation wherein intermediate state(s) could also be present. This differentiation of a two-state from a multi-state structural transition is non-trivial when studied by the several steady-state spectroscopic methods that are popular in protein-folding studies. In contrast to the steady-state methods, time-resolved fluorescence has the capability to reveal the presence of heterogeneity of structural forms due to the ‘fingerprint’ nature of fluorescence lifetimes of various forms. In this work, we establish this method by quantitative analysis of amplitudes associated with fluorescence lifetimes in multiexponential decays. First, we show that we can estimate, accurately, the relative population of species from two-component mixtures of non-interacting molecules such as fluorescent dyes, peptides and proteins. Subsequently, we demonstrate, by analysing the amplitudes of fluorescence lifetimes which are controlled by fluorescence resonance energy transfer (FRET), that the equilibrium folding-unfolding transition of the small single-domain protein barstar is not a two-step process.  相似文献   

12.
The design of photocatalytic processes is important for a sustainable society. Key to these photocatalytic reactions is electron transfer. This article is focused on titanium dioxide photocatalyzed organic synthesis and the design of a new [2+2] cycloaddition reaction based on the electron transfer process. Electron transfer - not only between the substrate and the photocatalyst but also inter- and intramolecularly – is crucial for the reaction design. Radical cations were generated by the photocatalyst and trapped by alkenes. The resultant cyclobutyl radical cations were immediately reduced by the aryl rings via intramolecular electron transfer to obtain cyclobutane rings. The outcome of the reaction was controlled by substitution of the aryl ring and the linker connecting the aryl ring to the enol ether. The carefully designed substrates were highly effective for photocatalytic cycloaddition.  相似文献   

13.
The electron-transfer chemistry of the isolated iron-molybdenum cofactor of nitrogenase (FeMoco) has been studied by electrochemical and spectroelectrochemical methods. Two interconverting forms of the cofactor arise from a redox-linked ligand isomerism at the terminal iron atom; this is attributed to rotamerism of an anionic N-methyl formamide ligand bound at this site. FeMoco in its EPR-silent oxidised state is shown to undergo three successive one-electron transfer steps. We argue that the first and second redox processes are associated with electron-transfer delocalised over the iron-sulfur core of the cofactor, whilst the third irreversible process is localised on molybdenum. This is strongly reinforced by spectroelectrochemical studies under (12)CO and (13)CO which reveal two independent carbon monoxide binding sites that are specifically associated with the second (iron core) and third (molybdenum) electron-transfer processes and which give rise to terminal nu((12)CO) bands at 1885 and 1920 cm(-1) respectively. Moreover, in parallel with earlier studies on the enzyme system, it is shown that at low CO concentration, carbon monoxide binds to the cofactor in bridging modes, with nu(CO) bands at 1835 and 1808 cm(-1) that are interconverted by single-electron transfer. Importantly we show that the contentious overall 2e difference in the assignment of the metal oxidation levels in the resting state of the enzyme-bound cofactor, arising from analysis of (57)Fe ENDOR and M?ssbauer data, can be resolved in the light of the electron-transfer chemistry of the isolated cofactor described herein.  相似文献   

14.
One-electron reduced metal complexes derived from photoactive ruthenium or iridium complexes are important intermediates for substrate activation steps in photoredox catalysis and for the photocatalytic generation of solar fuels. However, owing to the heavy atom effect, direct photochemical pathways to these key intermediates suffer from intrinsic efficiency problems resulting from rapid geminate recombination of radical pairs within the so-called solvent cage. In this study, we prepared and investigated molecular dyads capable of producing reduced metal complexes via an indirect pathway relying on a sequence of energy and electron transfer processes between a Ru complex and a covalently connected anthracene moiety. Our test reaction to establish the proof-of-concept is the photochemical reduction of ruthenium(tris)bipyridine by the ascorbate dianion as sacrificial donor in aqueous solution. The photochemical key step in the Ru-anthracene dyads is the reduction of a purely organic (anthracene) triplet excited state by the ascorbate dianion, yielding a spin-correlated radical pair whose (unproductive) recombination is strongly spin-forbidden. By carrying out detailed laser flash photolysis investigations, we provide clear evidence for the indirect reduced metal complex generation mechanism and show that this pathway can outperform the conventional direct metal complex photoreduction. The further optimization of our approach involving relatively simple molecular dyads might result in novel photocatalysts that convert substrates with unprecedented quantum yields.  相似文献   

15.
A simple and powerful approach for assessing the recombination losses in dye sensitised solar cells (DSSCs) across the current voltage curve (j-V) as a function of TiO(2) electron concentration (n) is demonstrated. The total flux of electrons recombining with iodine species in the electrolyte and oxidised dye molecules can be thought of as a recombination current density, defined as j(rec) = j(inj)-j where j(inj) is the current of electrons injected from optically excited dye states and j is the current density collected at cell voltage (V). The electron concentration at any given operating conditions is determined by charge extraction. This allows comparison of factors influencing electron recombination rates at matched n. We show that j(rec) is typically 2-3 times higher under 1 sun equivalent illumination (j(inj) > 0) relative to dark (j(inj) = 0) conditions. This difference was increased by increasing light intensity, electrolyte iodine concentration and electrolyte solvent viscosity. The difference was reduced by increasing the electrolyte iodide concentration and increasing the temperature. These results allowed us to verify a numerical model of complete operational cells (Barnes et al., Phys. Chem. Chem. Phys., DOI: 10.1039/c0cp01554g) and to relate the differences in j(rec) to physical processes in the devices. The difference between j(rec) in the light and dark can be explained by two factors: (1) an increase in the concentration of electron acceptor species (I(3)(-) and/or I(2)) when current is flowing under illumination relative to dark conditions where the current is flowing in the opposite direction, and (2) a non-trivial contribution from electron recombination to oxidised dye molecules under light conditions. More generally, the technique helps to assign the observed relationship between the components, processing and performance of DSSCs to more fundamental physical processes.  相似文献   

16.
Drying and pyrolysis of wood particles: experiments and simulation   总被引:3,自引:0,他引:3  
The objective of this study is to develop a flexible and stable numerical method to predict the thermal decomposition of large wood particles due to drying and pyrolysis. At a later stage, this model is applied to each particle of a packed bed and thus, forms the entire packed bed process as a sum of individual particle processes. Therefore, this approach can deal with particles of different sizes, shapes and properties. A general formulation of the conservation equations allows the geometry of a fuel particle to be treated as a plate, cylinder or sphere. The various processes such as heat-up, drying and pyrolysis are described by a set of one-dimensional and transient conservation equations for mass and energy. This allows for simultaneous processes e.g. reactions in time and covers the entire range between transport-limited (shrinking core) and kinetically limited (reacting core) reaction regimes. The particles interact with a gas phase by heat and mass transfer taking into account the Stefan correction due to the gas outflow during conversion. Experiments carried out span a temperature range between T=300 and 900 °C for particle sizes varying between 8 and 17 mm. A comparison between measurements and predictions of drying models yielded satisfactory agreement only for the constant evaporation temperature model and thus, indicating, that the drying process is transport limited by heat transfer for large wood particles. Likewise, predicted results of pyrolysis for the above-mentioned range of temperatures and sizes agreed satisfactorily with measurements.  相似文献   

17.
1,4,5,8-Naphthalenediimides (NDIs) are widely used motifs to design multichromophoric architectures due to their ease of functionalisation, their high oxidative power and the stability of their radical anion. The NDI building block can be incorporated in supramolecular systems by either core or imide functionalization. We report on the charge-transfer dynamics of a series of electron donor–acceptor dyads consisting of a NDI chromophore with one or two donors linked at the axial, imide position. Photo-population of the core-centred π–π* state is followed by ultrafast electron transfer from the electron donor to the NDI. Due to a solvent dependent singlet–triplet equilibrium inherent to the NDI core, both singlet and triplet charge-separated states are populated. We demonstrate that long-lived charge separation in the triplet state can be achieved by controlling the mutual orientation of the donor–acceptor sub-units. By extending this study to a supramolecular NDI-based cage, we also show that the triplet charge-separation yield can be increased by tuning the environment.

Ultrafast electron transfer from singlet and triplet excited states in equilibrium results in the population of both singlet and triplet charge-separated states.  相似文献   

18.
Abstract— Primary and secondary photochemical processes in oxygen-free aqueous solution have been characterised for FMN alone and in the presence of EDTA and four amino acids using nanosecond and microsecond flash photolysis and continuous photolysis techniques. The relative contributions of oneelectron and two-electron (group or hydride transfer) reactions to the deactivation of the triplet has been determined by comparing the radical concentration (560 nm) with the bleaching of the ground state (446 nm). It was concluded that one-electron reactions (hydrogen atom or electron abstraction) are the major mode of reactivity of the flavin triplet state with all the suhstrates studied.
The nature of the reactions of the flavin semiquinone radical have been studied quantitatively by microsecond flash photolysis. These secondary reactions consist of either a 'back reaction' between the flavin and substrate radicals (tryptophan or glycyl-tyrosine) or the transfer of a second electron (or hydrogen atom) from the substrate radical to the flavin radical (EDTA, methionine and possibly cysteine) to form reduced flavin and oxidised substrate. From a comparison of the quantum yields of formation of reduced flavin using 'flash' and continuous irradiation, an additional pathway for the decay of the flavin radical is suggested to occur at low light intensities in the presence of glycyl-tyrosine or histidine.  相似文献   

19.
[NiFe] hydrogenases catalyse the reaction H2↔2H++2e. Several states of the enzyme have been observed by spectroscopic methods. Among these, the two most oxidized states, called the unready Ni–A and Ni–SU states, have been especially intriguing, because they take a much longer time to activate than the corresponding ready Ni–B and Ni–SI states. It has recently been suggested that the unready states actually contain a (hydro)peroxide bridge between the Ni and Fe ions, in contrast to the hydroxide bridge in the ready states. In this paper, we use quantum refinement (crystallographic refinement, in which the molecular mechanics [MM] calculations, normally employed to supplement the crystallographic data, are replace by more accurate quantum mechanics [QM] calculations), combined QM/MM calculations, and accurate energy estimates to study the nature of a recent oxidised crystal structure of [NiFe] hydrogenase from Desulfovibrio fructosovorans. We show that the structure contains a mixture of several states in the active site. The experimental data is best explained by structures with a hydroxide bridge but with two of the cysteine ligands (one bridging and one terminal) partly oxidised. When the terminal Cys-543 ligand is oxidised, the sulphur occupies an alternative position, observed in several crystal structures. The Glu-25 residue, that forms a hydrogen bond to this sulphur, also changes position. A peroxide ligand may exist as a minor component in the crystal and the suggested structure is supported by the calculations. We suggest that oxidised states are slow-equilibrium mixtures of structures with a peroxide bound and structures with oxidised Cys residues, and that the former can be activated by replacement of the protonated peroxide with a H2 or CO ligand, as has been observed in electrochemical experiments.  相似文献   

20.
This study shows that the chemical reactivities depend on the orbital energy gaps contributing to the reactions. In the process where a reaction only makes progress through charge transfer with the minimal structural transformation of the reactant, the orbital energy gap gradient (OEGG) between the electron‐donating and electron‐accepting orbitals is proven to be very low. Using this relation, a normalized reaction diagram is constructed by plotting the normalized orbital energy gap with respect to the normalized intrinsic reaction coordinate. Application of this reaction diagram to 43 fundamental reactions showed that the majority of the forward reactions provide small OEGGs in the initial stages, and therefore, the initial processes of the forward reactions are supposed to proceed only through charge transfer. Conversely, more than 60% of the backward reactions are found to give large OEGGs implying very slow reactions associated with considerable structural transformations. Focusing on the anti‐activation‐energy reactions, in which the forward reactions have higher barriers than those of the backward ones, most of these reactions are shown to give large OEGGs for the backward reactions. It is also found that the reactions providing large OEGGs in the forward directions inconsistent with the reaction rate constants are classified into SN2, symmetric, and methyl radical reactions. Interestingly, several large‐OEGG reactions are experimentally established to get around the optimum pathways. This indicates that the reactions can take significantly different pathways from the optimum ones provided no charge transfer proceeds spontaneously without the structural transformations of the reactants. © 2014 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号