首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
In senescent leaves chlorophyll (Chl) catabolites typically accumulate as colorless tetrapyrroles, classified as formyloxobilin-type (or type-I) or dioxobilin-type (type-II) phyllobilins (PBs). Yellow type-I Chl catabolites (YCCs) also occur in some senescent leaves, in which they are generated by oxidation of colorless type-I PBs. A yellow type-II PB was recently proposed to occur in extracts of fall leaves of grapevine (Vitis vinifera), tentatively identified by its mass and UV/Vis absorption characteristics. Here, the first synthesis of a yellow type-II Chl catabolite (DYCC) from its presumed natural colorless type-II precursor is reported. A homogenate of a Spatiphyllum wallisii leaf was used as “green” means of effective and selective oxidation. The synthetic DYCC was fully characterized and identified with the yellow grapevine leaf pigment. As related yellow type-I PBs do, the DYCC functions as a reversible photoswitch by undergoing selective photo-induced Z/E isomerization of its C15=C16 bond.  相似文献   

2.
In extracts of senescent leaves of spinach (Spinacia oleracea) that had degreened naturally after the onset of flowering, four colorless compounds, which had characteristic UV/VIS properties of nonfluorescent chlorophyll catabolites (NCCs), were detected by HPLC. From the extracts of 58.7 g of senescent leaves of Sp. oleracea, a two‐stage HPLC purification procedure provided ca. 15 μmol of So‐NCC‐2, the most abundant polar NCC in the leaves of this vegetable. So‐NCC‐2 was isolated as a slightly yellow powder and analyzed by spectroscopic means. The high‐resolution mass spectra indicated that So‐NCC‐2 has the same molecular formula as Hv‐NCC‐1 from barley (Hordeum vulgare), the first non‐green chlorophyll catabolite from a higher plant to be structurally analyzed. Homo‐ and hetero‐nuclear NMR spectroscopy indicated So‐NCC‐2 to have the same constitution as its epimer Hv‐NCC‐1, and to differ from the latter by the configuration at C(1). The catabolite from spinach could be identified with one of the products from OsO4 dihydroxylation at the vinyl group of the main NCC from Cercidiphyllum japonicum. Chlorophyll breakdown in spinach and in C. japonicum apparently involves an enzyme‐catalyzed reduction that occurs with the same stereochemical sense at C(1), but opposite to that in barley.  相似文献   

3.
In extracts of senescent leaves of the maize plant Zea mays, two colorless compounds with UV/Vis-characteristics of nonfluorescent chlorophyll catabolites (NCCs) were detected and tentatively named Zm-NCCs. The constitution of the two polar Zm-NCCs was determined by spectroscopic means, which confirmed both of these tetrapyrroles to have the basic ligand structure typical of the NCCs from (other) senescent higher plants. In the less polar catabolite, named Zm-NCC-2, the core structure was conjugated at the 82-position with a glucopyranose unit. Zm-NCC-2 had the same constitution as Nr-NCC-2, an NCC from tobacco (Nicotiana rustica). Indeed, the two NCCs were identified (further) based on their HPL-chromatographic and NMR-spectroscopic properties. The more polar NCC from maize, Zm-NCC-1, differed from Zm-NCC-2 by carrying a dihydroxyethyl side chain instead of a vinyl group at the 3-position. In earlier work on polar NCCs, only separate glucopyranosyl- and dihydroxyethyl-functionalities were detected. Zm-NCC-1 thus is a new constitutional variant of the structures of NCCs from senescent higher plants.  相似文献   

4.
Summary. In extracts of senescent leaves of the maize plant Zea mays, two colorless compounds with UV/Vis-characteristics of nonfluorescent chlorophyll catabolites (NCCs) were detected and tentatively named Zm-NCCs. The constitution of the two polar Zm-NCCs was determined by spectroscopic means, which confirmed both of these tetrapyrroles to have the basic ligand structure typical of the NCCs from (other) senescent higher plants. In the less polar catabolite, named Zm-NCC-2, the core structure was conjugated at the 82-position with a glucopyranose unit. Zm-NCC-2 had the same constitution as Nr-NCC-2, an NCC from tobacco (Nicotiana rustica). Indeed, the two NCCs were identified (further) based on their HPL-chromatographic and NMR-spectroscopic properties. The more polar NCC from maize, Zm-NCC-1, differed from Zm-NCC-2 by carrying a dihydroxyethyl side chain instead of a vinyl group at the 3-position. In earlier work on polar NCCs, only separate glucopyranosyl- and dihydroxyethyl-functionalities were detected. Zm-NCC-1 thus is a new constitutional variant of the structures of NCCs from senescent higher plants.  相似文献   

5.
Fall leaves of the common wych elm tree (Ulmus glabra) were studied with respect to chlorophyll catabolites. Over a dozen colorless, non‐fluorescent chlorophyll catabolites (NCCs) and several yellow chlorophyll catabolites (YCCs) were identified tentatively. Three NCC fractions were isolated and their structures were characterized by spectroscopic means. Two of these, Ug‐NCC‐27 and Ug‐NCC‐43, carried a glucopyranosyl appendage. Ug‐NCC‐53, the least polar of these NCCs, was identified as the formal product of an intramolecular esterification of the propionate and primary glucopyranosyl hydroxyl groups of Ug‐NCC‐43. Thus, the glucopyranose moiety and three of the pyrrole units of Ug‐NCC‐53 span a 20‐membered ring, installing a bicyclo[17.3.1]glycoside moiety. This structural motif is unprecedented in heterocyclic natural products, according to a thorough literature search. The remarkable, three‐dimensional bicyclo[17.3.1]glycoside architecture reduces the flexibility of the linear tetrapyrrole. This feature of Ug‐NCC‐53 is intriguing, considering the diverse biological effects of known bicyclo[n.3.1]glycosidic natural products.  相似文献   

6.
Chlorophyll breakdown is a visual phenomenon of leaf senescence and fruit ripening. It leads to the formation of colorless chlorophyll catabolites, a group of (chlorophyll‐derived bilin‐type) linear tetrapyrroles. Here, analysis and structure elucidation of the chlorophyll breakdown products in leaves of banana (Musa acuminata) is reported. In senescent leaves of this monocot all chlorophyll catabolites identified were hypermodified fluorescent chlorophyll catabolites (hmFCCs). Surprisingly, nonfluorescent chlorophyll catabolites (NCCs) were not found, the often abundant and apparently typical final chlorophyll breakdown products in senescent leaves. As a rule, FCCs exist only fleetingly, and they isomerize rapidly to NCCs in the senescent plant cell. Amazingly, in the leaves of banana plants, persistent hmFCCs were identified that accounted for about 80 % of the chlorophyll broken down, and yellow leaves of M. acuminata display a strong blue luminescence. The structures of eight hmFCCs from banana leaves were analyzed by spectroscopic means. The massive accumulation of the hmFCCs in banana leaves, and their functional group characteristics, indicate a chlorophyll breakdown path, the downstream transformations of which are entirely reprogrammed towards the generation of persistent and blue fluorescent FCCs. As expressed earlier in related studies, the present findings call for attention, as to still elusive biological roles of these linear tetrapyrroles.  相似文献   

7.
1‐Formyl‐19‐oxobilin‐type tetrapyrroles are characteristic, abundant products of chlorophyll breakdown in senescent leaves. However, in some leaves, 1,19‐dioxobilin‐type chlorophyll catabolites (DCCs) lacking the formyl group accumulate instead. A P450 enzyme was identified in in vitro studies that removed the formyl group of a primary fluorescent chlorophyll catabolite (pFCC) and generated fluorescent DCCs. These DCCs are precursors of isomeric nonfluorescent DCCs (NDCCs). Here, we report a structural investigation of the NDCCs in senescent leaves of wild‐type Arabidopsis thaliana. Four new NDCCs were characterized, two of which carried a stereoselectively added hydroxymethyl group. Such formal DCC hydroxymethylations were previously found in DCCs in leaves of a mutant of A. thaliana. They are now indicated to be a feature of chlorophyll breakdown in A. thaliana, associated with the specific in vivo deformylation of pFCC en route to NDCCs.  相似文献   

8.
Colorless nonfluorescent chlorophyll (Chl) catabolites (NCCs) are formyloxobilin‐type phyllobilins, which are considered the typical products of Chl breakdown in senescent leaves. However, in degreened leaves of some plants, dioxobilin‐type Chl catabolites (DCCs) predominate, which lack the formyl group of the NCCs, and which arise from Chl catabolites by oxidative removal of the formyl group by a P450 enzyme. Here a structural investigation of the DCCs in the methylesterase16 mutant of Arabidopsis thaliana is reported. Eight new DCCs were identified and characterized structurally. Strikingly, three of these DCCs carry stereospecifically added hydroxymethyl groups, and represent bilin‐type linear tetrapyrroles with an unprecedented modification. Indeed, DCCs show a remarkable structural parallel, otherwise, to the bilins from heme breakdown.  相似文献   

9.
The disappearance of chlorophyll is a visual sign of fruit ripening. Yet, chlorophyll breakdown in fruit has hardly been explored; its non-green degradation products are largely unknown. Here we report the analysis and structure elucidation of colorless tetrapyrrolic chlorophyll breakdown products in commercially available, ripening bananas (Musa acuminata, Cavendish cultivar). In banana peels, chlorophyll catabolites were found in an unprecedented structural richness: a variety of new fluorescent chlorophyll catabolites (FCCs) and nonfluorescent chlorophyll catabolites (NCCs) were detected. As a rule, FCCs exist only "fleetingly" and are hard to observe. However, in bananas several of the FCCs (named Mc-FCCs) were persistent and carried an ester function at the propionate side-chain. NCCs were less abundant, and exhibited a free propionic acid group, but functional modifications elsewhere. The modifications of NCCs in banana peels were similar to those found in NCCs from senescent leaves. They are presumed to be introduced by enzymatic transformations at the stage of the mostly unobserved, direct FCC-precursors. The observed divergent functional group characteristics of the Mc-FCCs versus those of the Mc-NCCs indicated two major "late" processing lines of chlorophyll breakdown in ripening bananas. The "last common precursor" at the branching point to either the persistent FCCs, or towards the NCCs, was identified as a temporarily abundant "secondary" FCC. The existence of two "downstream" branches of chlorophyll breakdown in banana peels, and the striking accumulation of persistent Mc-FCCs call for attention as to the still-elusive biological roles of the resulting colorless linear tetrapyrroles.  相似文献   

10.
The fall colors are signs of chlorophyll breakdown, the biological process in plants that generates phyllobilins. Most of the abundant natural phyllobilins are colorless, but yellow phyllobilins (phylloxanthobilins) also occur in fall leaves. As shown here, phylloxanthobilins are unique four‐stage photoswitches. Which switching mode is turned on is controlled by the molecular environment. In polar media, phylloxanthobilins are monomeric and undergo photoreversible Z/E isomerization, similar to that observed for bilirubin. Unlike bilirubin, however, the phylloxanthobilin Z isomers photodimerize in apolar solvents by regio‐ and stereospecific thermoreversible [2+2] cycloadditions from self‐assembled hydrogen‐bonded dimers. X‐ray analysis revealed the first stereostructure of a phylloxanthobilin and its hydrogen‐bonded self‐templating architecture, helping to rationalize its exceptional photoswitch features. The chemical behavior of phylloxanthobilins will play a seminal role in identifying biological roles of phyllobilins.  相似文献   

11.
Chlorophyll breakdown in higher plants occurs by the so called “PaO/phyllobilin” path. It generates two major types of phyllobilins, the characteristic 1‐formyl‐19‐oxobilins and the more recently discovered 1,19‐dioxobilins. The hypothetical branching point at which the original 1‐formyl‐19‐oxobilins are transformed into 1,19‐dioxobilins is still elusive. Here, we clarify this hypothetical crucial transition on the basis of the identification of the first natural 1,19‐dioxobilin‐type fluorescent chlorophyll catabolite (DFCC). This transient chlorophyll breakdown intermediate was isolated from leaf extracts of Arabidopsis thaliana at an early stage of senescence. The fleetingly existent DFCC was then shown to represent the direct precursor of the major nonfluorescent 1,19‐dioxobilin that accumulated in fully senescent leaves.  相似文献   

12.
7‐epi‐Taxane has been achieved efficiently in gram scale from natural taxane via inversion of the 7‐hydroxyl group simply using Ag2O as catalyst and DMF as solvent. The catalyst could be quantitatively recovered by filtration without loss of catalytic activity. This condition is also applicable to the direct epimerization of taxane derivatives (e.g., docetaxel and paclitaxel) to 7‐epi‐taxane derivatives (e.g., 7‐epi‐docetaxel and 7‐epi‐paclitaxel). Furthermore, 33 ester derivatives of 7‐epi‐taxane with different amino acid moieties at the position of C‐13 were successfully synthesized via esterification without protecting C‐7‐OH. Bioassay results revealed that compounds 13 and 18 have good selectivity against prostatic cancer cell line DU145, with IC50 value as low as 15.9 nmol/L for 18 .  相似文献   

13.
The 1,3‐dipolar cycloaddition of azomethine ylides derived from isatin and amino acids viz. sarcosine and proline to 2‐arylmethylidene‐5,6‐dihydroimidazo[2,1‐b]thiazol‐3(2H)‐ones afforded novel spiro pyrrolidines and pyrrolizidines regio‐ and stereoselectively in moderate yields. The products were characterized thoroughly by IR, MS, NMR together with elementary analysis.  相似文献   

14.
Alkylaryl‐ and alkylheteroarylketones, including those with condensed aromatic moieties, are readily vinylated with arylacetylenes (KOH/DMSO, 100 °C, 1 h) to give regio‐ and stereoselectively the (E)β‐γ‐ethylenic ketones ((E)‐3‐buten‐1‐ones) in 61–84 % yields and with approximately 100 % stereoselectivity. This vinylation represents a new C(sp3)? C(sp2) bond‐forming reaction of high synthetic potential.  相似文献   

15.
The phytoalexin elicitor β-(1→3)-branched β-( 1→6)-linked glucohexatose has been regio- and stereospecifically synthesized by coupling of the 3, 6-branched gluco-trisaccharide Schmidt reagent 10 with a mixture of multiol 3,6-branched gluco-trisaccharides 13 which consists of free 5,6‘-OH trisaccharide, free 5,2‘ ,6‘-OH trisaccharide, free 5,3‘ ,6‘-OH trisaccharide and so on. The compounds 10 and 13 were prepared from 1,2:5,6-di-O-isopropylidene-α-D-glucofuranose , 2, 3, 4, 6-tetra-O-ben-zoyi-a-D-glucopyranosyl trichioroacetimldate, and 2,3,4, 6-tetra-O-acetyl-α-D-glucopyranosyl trichloreacetimidate through regio- and stereoselective manners.  相似文献   

16.
Total syntheses of 6 BE-43547A2 analogues modified at O35 and C15 sites are reported. Late stage oxidation of 15-deoxy-BE-43547A2 delivered 15-epi-BE-43547A2, which verified the proposition that the C15 is an active site for late stage oxidation. The N35 and C15-F of analogues 1b and 1d were synthesized. Cellular level tests indicated O35 is a prohibitive site for modification and substitution of the OH at C15 with F or trim of the OH both led to a dramatic loss of activity. Compound 1e showed comparable inhibitory level towards Panc-1?cells, which indicated that the OH at C15 are permissive site for further modifications.  相似文献   

17.
This paper presents a full account of the use of Hiyama cross‐coupling reactions in a highly convergent approach to retinoids in which the key step is construction of the central C10? C11 bond. Representatives of two families of oxygen‐activated dienyl silanes (ethoxysilanes and silanols) and of all reported families of “safety‐catch” silanols (siletanes, silyl hydrides, allyl‐, benzyl‐, aryl‐, 2‐pyridyl‐ and 2‐thienylsilanes) were regio‐ and stereoselectively prepared and stereospecifically coupled to an appropriate electrophile by treatment with a palladium catalyst and a nucleophilic activator. Both all‐trans and 11‐cis‐retinoids, and their chain‐demethylated analogues, were obtained in good yields regardless of the geometry (E/Z) and of the steric congestion in each fragment. This comprehensive study conclusively establishes the Hiyama cross‐coupling reaction, with its mild reaction conditions and stable, easily prepared, ecologically advantageous silicon‐based coupling partners, as the most effective route to retinoids reported to date.  相似文献   

18.
傅铭堃  吴宪  宁君  李建中 《中国化学》2005,23(7):901-904
To implement the solid phase synthesis of 4““-epi-methylamino-4““-deoxyavermecfin B1 benzoate, tert-butyldimethylsilylchloride was chosen for the first solution synthesis. Then a novel silyl chloride resin 1, achieved from hydroxymethyl polystyrene resin and dimethyldichlorosilane, was used successfully for the attachment of avermectin B1 2. Through oxidation, amination formation, cleavage, and benzoate formation, resin bounded avermectin B1 9 gave 4““-epi-methylamino-4““-deoxyavermectin B1 benzoate 3.  相似文献   

19.
The 2‐acylcycloalkanones 1a – g and 3a – c , possessing a polyfluoroalkyl group, react with hydroxylamine regio‐ and stereoselectively to yield 4,5‐dihydroisoxazol‐5‐ols 2a – g and 4a – c , respectively, i.e., products of N‐addition to the oxo group at the cycloalkane ring (Schemes 1 and 2). The products 2 and 4 can be dehydrated under drastic conditions only (Schemes 3 and 4). The structure of one of the 4,5‐dihydroisoxazol‐5‐ols was confirmed by X‐ray crystal‐structure analysis.  相似文献   

20.
A new diterpene alkaloid, 12‐epi‐15‐O‐acetyl‐17‐benzoyl‐16‐hydroxy‐16,17‐dihydronapelline ( 1 ), along with nine known diterpene alkaloids including yunaconitine ( 2 ), neoline ( 3 ), mesaconitine ( 4 ), beiwutine ( 5 ), chasmanine ( 6 ), songorine ( 7 ), 12‐epi‐napelline ( 8 ), foresticine ( 9 ), and 15α‐hydroxyneoline ( 10 ) were isolated from the roots of Aconitum carmichaeli Debx. The structure of compound 1 was elucidated by comprehensive spectroscopic analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号