首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cisplatin‐rich supramolecular nanoparticles are constructed through the supramolecular inclusion interaction between the admantyl (Ad)‐terminated poly(aspartic acid) (Ad‐P(Asp)) and the β‐cyclodextrin (β‐CD)‐terminated poly(2‐methyl‐2‐oxazoline). In the formation of the nanoparticles, the β‐CD/admantane inclusion complex integrates poly(2‐methyl‐2‐oxazoline) and poly(aspartic acid) chains to form pseudoblock copolymers, followed by the coordination between carboxyl groups in P(Asp) block and cisplatin. This coordination interaction drives the formation of nanoparticle and enables cisplatin incorporated into the nanoparticles. The spherical cisplatin‐rich supramolecular nanoparticles have 53% cisplatin‐loading content, good stability, and effective inhibition of the cell proliferation when it is tested in H22 cancer cells. Near‐infrared fluorescence imaging of tumor bearing mice reveals that the cisplatin‐rich nanoparticles can target the tumor in vivo effectively.  相似文献   

2.
This study identifies a series of Ir‐bicyclic phosphoroamidite–oxazoline/thiazole catalytic systems that can hydrogenate a wide range of minimally functionalized olefins (including E‐ and Z‐tri‐ and disubstituted substrates, vinylsilanes, enol phosphinates, tri‐ and disubstituted alkenylboronic esters, and α,β‐unsaturated enones) in high enantioselectivities (ee values up to 99 %) and conversions. The design of the new phosphoroamidite–oxazoline/thiazole ligands derives from a previous successful generation of bicyclic N‐phosphane–oxazoline/thiazole ligands, by replacing the N‐phosphane group with a π‐acceptor biaryl phosphoroamidite moiety. A small but structurally important family of Ir‐phosphoroamidite–oxazoline/thiazole precatalysts has thus been synthesized by changing the nature of the N‐donor group (either oxazoline or thiazole) and the configuration at the biaryl phosphoroamidite moiety. The substitution of the N‐phosphane by a phosphoroamidite group in the bicyclic N‐phosphane–oxazoline/thiazole ligands extended the range of olefins that can be successfully hydrogenated.  相似文献   

3.
Hydrogen bonding is widely present and plays a significant role in material science and supramolecular chemistry. This work reports a straightforward strategy for the preparation of polymeric nanoparticles from neutral poly(2‐oxazoline)s (POx) and tannic acid (TA) driven by their intermolecular hydrogen bonding. Dynamic light scattering (DLS) and scanning electron microscope (SEM) measurements showed that POx bearing different substituents, that is, methyl, ethyl and n‐propyl in the 2‐position all could assemble with TA into stable nanoparticles in water or ethanol. The diameter of the assembled nanoparticles could be manipulated by varying parameters such as molecular weight of POx, concentration and ratio of POx, and TA. Interestingly, POx/TA nanoparticles exhibited upper critical solution temperature (UCST)‐type thermoresponsive properties in ethanol or water depending on the molecular weight and substituent in the 2‐position of POx. Increasing or decreasing the temperature at the transition point resulted in the reversible transformation between assembled nanoparticles and disassembled poly(2‐n‐propyl‐2‐oxazoline) (PnPrOx) and TA. In view of the tailored size of the stable nanoparticles and the biocompatibilities of POx and TA, the prepared thermoresponsive nanoparticles are promising candidates as carriers for medicine toward related biomedical applications. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1520–1527  相似文献   

4.
The synthesis and microwave‐assisted polymerization of a series of chiral 2‐oxazolines with varying alkyl pendant groups, namely R‐2‐ethyl‐4‐ethyl‐2‐oxazoline (R‐EtEtOx), R‐2‐butyl‐4‐ethyl‐2‐oxazoline (R‐BuEtOx), R‐2‐octyl‐4‐ethyl‐2‐oxazoline, 2‐nonyl‐4‐ethyl‐2‐oxazoline, and R‐2‐undecyl‐4‐ethyl‐2‐oxazoline (R‐UndeEtOx), are reported. A kinetic investigation of the polymerization of R‐EtEtOx revealed a living polymerization mechanism. The poly(2‐oxazoline)s containing an ethyl, butyl, and octyl pendant group form similar chiral structures according to circular dichroism measurements. When the pendant group is further elongated, the chiral structure becomes more flexible in trifluoroethanol and the thermal response in hexafluoroisopropanol (HFIP) significantly changes. The short‐range structure of poly‐R‐BuEtOx dissolved in HFIP is thermoresponsive in a complex way, due to HFIP hydrogen bonding to the polymeric amide groups, whereas the long‐range structure determined from small angle neutron scattering is insensitive to temperature demonstrating that only the local secondary structure changes with temperature. In addition, the chiral structure of poly‐R‐UndeEtOx depends on the polarity of the solvent. The short‐range structure becomes more flexible in polar solvents, most likely due to interactions with the amide groups disturbing the secondary structure. In contrast, the long‐range structural transition from an ellipsoid in the apolar n‐hexane to a rod structure in the polar n‐butanol is ascribed to better solvation of the long aliphatic side chains. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

5.
The chiral phosphine‐oxazoline ligands 3 and 4 bearing 4‐alkoxymethyl substituents on the oxazoline ring with (R)‐configuration were prepared from L‐serine methyl ester in 66% and 33% yields, respectively. Along this synthetic pathway, the β‐hydroxylamides derived from L‐serine methyl ester and 2‐halobenzoyl chlorides were expediently converted to the corresponding oxazolines by using diethylaminosulfur trifluoride as the activation agent. Potassium diphenylphosphide was the reagent of choice for replacing the bromine atom on the phenyl ring, giving the desired oxazoline‐phosphine ligands 3 and 4 . Together with [Pd(η3‐allyl)Cl]2, ligands 3 and 4 induced an enantioselective allylic substitution reaction of 1,3‐diphenyl‐2‐pro‐penyl acetate by dimethyl malonate. Although ligands 3 and 4 exhibit the (R)‐configuration, differing from the (S)‐configuration of Pfaltz‐Helmchen‐Williams phosphine‐oxazoline ligands, all these ligands led to the same enantiotopic preference in the allylic substitution reaction. To facilitate the recovery and reuse of the phosphine‐oxazoline ligand, immobilization on Merrifield resin was attempted, albeit in low loading.  相似文献   

6.
Poly(2‐propyl‐oxazoline)s can be prepared by living cationic ring‐opening polymerization of 2‐oxazolines and represent an emerging class of biocompatible polymers exhibiting a lower critical solution temperature in aqueous solution close to body temperature. However, their usability is limited by the irreversibility of the transition due to isothermal crystallization in case of poly(2‐isopropyl‐2‐oxazoline) and the rather low glass transition temperatures (Tg < 45 °C) of poly(2‐n‐propyl‐2‐oxazoline)‐based polymers. The copolymerization of 2‐cyclopropyl‐2‐oxazoline and 2‐ethyl‐2‐oxazoline presented herein yields gradient copolymers whose cloud point temperatures can be accurately tuned over a broad temperature range by simple variation of the composition. Surprisingly, all copolymers reveal lower Tgs than the corresponding homopolymers ascribed to suppression of interchain interactions. However, it is noteworthy that the copolymers still have Tgs > 45 °C, enabling convenient storage in the fridge for future biomedical formulations. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3118–3122  相似文献   

7.
Poly(2‐oxazoline)s with methyl ester functionalized side chains are interesting as they can undergo a direct amidation reaction or can be hydrolyzed to the carboxylic acid, making them versatile functional polymers for conjugation. In this work, detailed studies on the homo‐ and copolymerization kinetics of two methyl ester functionalized 2‐oxazoline monomers with 2‐methyl‐2‐oxazoline, 2‐ethyl‐2‐oxazoline, and 2‐n‐propyl‐2‐oxazoline are reported. The homopolymerization of the methyl ester functionalized monomers is found to be faster compared to the alkyl monomers, while copolymerization unexpectedly reveals that the methyl ester containing monomers significantly accelerate the polymerization. A computational study confirms that methyl ester groups increase the electrophilicity of the living chain end, even if they are not directly attached to the terminal residue. Moreover, the electrophilicity of the living chain end is found to be more important than the nucleophilicity of the monomer in determining the rate of propagation. However, the monomer nucleophilicity can be correlated with the different rates of incorporation when two monomers compete for the same chain end, that is, in copolymerizations. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2649–2661  相似文献   

8.
The comparative studies on the miscibility and phase behavior between the blends of linear and star‐shaped poly(2‐methyl‐2‐oxazoline) with poly(vinylidene fluoride) (PVDF) were carried out in this work. The linear poly(2‐methyl‐2‐oxazoline) was synthesized by the ring opening polymerization of 2‐methyl‐2‐oxazoline in the presence of methyl p‐toluenesulfonate (MeOTs) whereas the star‐shaped poly(2‐methyl‐2‐oxazoline) was synthesized with octa(3‐iodopropyl) polyhedral oligomeric silsesquioxane [(IC3H6)8Si8O12, OipPOSS] as an octafunctional initiator. The polymers with different topological structures were characterized by means of Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy. It is found that the star‐shaped poly(2‐methyl‐2‐oxazoline) was miscible with poly(vinylidene fluoride) (PVDF), which was evidenced by single glass‐transition temperature behavior and the equilibrium melting‐point depression. Nonetheless, the blends of linear poly(2‐methyl‐2‐oxazoline) with PVDF were phase‐separated. The difference in miscibility was ascribed to the topological effect of PMOx macromolecules on the miscibility. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 942–952, 2006  相似文献   

9.
Using two different zirconocene/MAO catalyst systems, propene was copolymerized with the comonomers 2‐(9‐decene‐1‐yl)‐1,3‐oxazoline and 2‐(4‐(10‐undecene‐1‐oxo)phenyl)‐1,3‐oxazoline, respectively. The catalysts used were rac‐Et[Ind]2ZrCl2 and rac‐Me2Si[2‐Me‐4, 5‐BenzInd]2ZrCl2. Up to 0.53 mol‐% oxazoline could be incorporated into polypropene. Oxazoline content, molecular weight, degree of isotacticity and melting behavior were dependent on the catalyst system, comonomer structure and comonomer concentration in the feed.  相似文献   

10.
The influence of Hofmeister salts was investigated on the cloud point of three poly(2‐oxazoline)s, namely poly(2‐ethyl‐2‐oxazoline) [PEtOx], poly(2‐n‐propyl‐2‐oxazoline) [PnPropOx], and poly(2‐isopropyl‐2‐oxazoline) [PiPropOx]. In addition, a comb polymer based on oligo‐2‐ethyl‐2‐oxazoline side chains and a methacrylate backbone (POEtOxMA) was included in this investigation. It was found that the ionic response of the poly(2‐oxazoline)s strongly depends on their hydrophilicity. The comb polymer POEtOxMA revealed a strikingly similar response to the salts as linear PEtOx even though the cloud points of the polymers in water differ. This indicates that the architecture does not significantly influence the effect of the Hofmeister ions, even though there is a difference in the absolute cloud point.

  相似文献   


11.
Propylene copolymers with different polar groups were synthesised using rac‐Et[1‐Ind]2ZrCl2/MAO as the catalyst system. 10‐Undecen‐1‐ol, 10‐undecenoyl chloride, 10‐undecenoic acid, 2‐(9‐decen‐1‐yl)‐1,3‐oxazoline, 2‐(9‐decen‐1‐yl)‐4,4‐dimethyl‐1,3‐oxazoline, and 2‐[4‐(10‐undecene‐1‐oxy)phenyl]‐1,3‐oxazoline were used as comonomers. The addition of water to the 10‐undecenoyl chloride copolymer solution led to an acid‐functionalised copolymer. In the case of 2‐(9‐decen‐1‐yl)‐1,3‐oxazoline and its homopolymers, polymerisation temperature was varied. Up to 0.61 mol‐% comonomer were incorporated into the poly(propylene)s. The catalyst activities for 10‐undecen‐1‐ol, 10‐undecenoyl chloride and 10‐undecenoic acid were much higher than for the oxazoline comonomers.  相似文献   

12.
The performance of water‐ and solvent‐cast, two‐component photoresist films containing poly(2‐isopropenyl‐2‐oxazoline) or poly(2‐isopropenyl‐2‐oxazoline‐co‐styrene) with a photoacid generator has been investigated. These materials afford negative‐tone images after deep‐UV exposure and development in a suitable medium (water or toluene). Resist solutions prepared from polymers containing at least 80 mol % 2‐isopropenyl‐2‐oxazoline may be cast from and developed in pure water. Features of higher quality can be obtained when the resist is cast from 2‐methoxyethanol, probably because side reactions such as partial hydrolysis of the pendant oxazoline rings in aqueous environments are avoided. It was possible to resolve micrometer scale patterns using ca. 200 mJ/cm2 of irradiation at 254 nm, followed by heating 2 min at 130°C and development in water alone. Image quality and etch resistance were improved using copolymers containing up to 20 mol % of styrene repeat units. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1225–1236, 1999  相似文献   

13.
New amphiphilic and lypophilic polymer networks were obtained by the copolymerization of 2‐methyl‐2‐oxazoline (MeOXA), and/or 2‐nonyl‐2‐oxazoline (NoOXA) and 2,2′‐tetramethylenebis(2‐oxazoline) (BisOXA), respectively, initiating the copolymerization by random copolymers of chloromethylstyrene and methyl methacrylate or of chloromethylstyrene and styrene (macroinitiator method). Potassium iodide was used as an activator agent and the reaction was carried out in benzonitrile at 110 °C. In general, the polymer gels were obtained with a yield of 62 to 88%. The networks were characterized by high‐resolution magic angle spinning (HRMAS) NMR spectroscopy and by its absorption of polar and nonpolar solvents. In the case of amphiphilic polymer networks, the absorption of solvents depends on the molar ratio of 2‐methyl‐ to 2‐nonyl‐2‐oxazoline inside the polymer network favoring the absorption of polar solvents with a higher content of 2‐methyl‐2‐oxazoline. These gels showed a maximal swelling degree of 13 mL of water, 20 mL of methanol, and 13 mL of chloroform, respectively, per g of polymer. The lypophilic polymer networks containing only 2‐nonyl‐2‐oxazoline showed a maximal swelling degree of 8 mL of toluene, 14 mL of chloroform, and 2 mL of methanol, respectively, per g of the lypophilic network. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 122–128, 2005  相似文献   

14.
A series of hydrogels from 2‐ethyl‐2‐oxazoline and three bis(2‐oxazoline) crosslinkers—1,4‐butylene‐2,2′‐bis(2‐oxazoline), 1,6‐hexamethylene‐2,2′‐bis(2‐oxazoline), and 1,8‐octamethylene‐2,2′‐bis(2‐oxazoline)—are prepared. The hydrogels differ by the length of aliphatic chain of crosslinker and by the percentage of crosslinker (2–10%). The influence of the type and the percentage of the crosslinker on swelling properties, mechanical properties, and state of water is studied. The equilibrium swelling degree in water ranges from 2 to 20. With a proper selection of the crosslinker, Young's modulus can be varied from 10 kPa to almost 100 kPa. To evaluate the potential for medical applications, the cytotoxicity of extracts and the contact toxicity toward murine fibroblasts are measured. The hydrogels with the crosslinker containing a shorter aliphatic exhibit low toxicity toward fibroblast cells. Moreover, the viability and the proliferation of pancreatic β‐cells incubated inside hydrogels for 12 days are analyzed. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1548–1559  相似文献   

15.
Crystal structures are reported for three isomeric compounds, namely 2‐(2‐hydroxy­phenyl)‐2‐oxazoline, (I), 2‐(3‐hydroxy­phenyl)‐2‐oxazoline, (II), and 2‐(4‐hydroxy­phenyl)‐2‐oxazoline, (III), all C9H9NO2 [systematic names: 2‐(4,5‐dihydro‐1,3‐oxazol‐2‐yl)phenol, (I), 3‐(4,5‐dihydro‐1,3‐oxazol‐2‐yl)phenol, (II), and 4‐(4,5‐dihydro‐1,3‐oxazol‐2‐yl)phenol, (III)]. In these compounds, the deviation from coplanarity of the oxazoline and benzene rings is dependent on the position of the hydroxy group on the benzene ring. The coplanar arrangement in (I) is stabilized by a strong intra­molecular O—H⋯N hydrogen bond. Surprisingly, the 2‐oxazoline ring in mol­ecule B of (II) adopts a 3T4 (C2TC3) conformation, while the 2‐oxazoline ring in mol­ecule A, as well as that in (I) and (III), is nearly planar, as expected. Tetra­mers of mol­ecules of (II) are formed and they are bound together via weak C—H⋯N hydrogen bonds. In (III), strong inter­molecular O—H⋯N hydrogen bonds and weak intra­molecular C—H⋯O hydrogen bonds lead to the formation of an infinite chain of mol­ecules perpendicular to the b direction. This paper also reports a theoretical investigation of hydrogen bonds, based on density functional theory (DFT) employing periodic boundary conditions.  相似文献   

16.
The title compounds were generated by deprotonation of different benzyl‐type carbamates with sec‐butyllithium in the presence of chiral diamines (?)‐sparteine or diisopropyl and di‐tert‐butyl bis(oxazoline)s. These lithiated species exhibit configurational lability at ?78 °C. In the case of the chiral di‐tert‐butyl bis(oxazoline), the equilibrium of the epimeric complexes can be used synthetically to obtain highly enantioenriched secondary benzyl carbamates. The enantiodetermining step was proven to be a dynamic thermodynamic resolution. The absolute configurations of the products were determined, and the stereochemical pathways of selected substitution reactions were thus elucidated. High‐level quantum chemical investigations were performed to gain insight into the experimentally investigated system. To obtain an accuracy for the energy difference (ΔΔH) between two epimeric complexes of about 0.5 kcal mol?1 as well as the correct sign, a theoretical procedure was established. It included geometry optimization at the dispersion‐corrected DFT level, computation of zero‐point vibrational energies, and single‐point SCS‐MP2 energy calculations with large atomic‐orbital basis sets.  相似文献   

17.
A new 2‐oxazoline monomer with a protected thiol group, 2‐[2‐(4‐methoxybenzylsulfanyl)ethyl]‐2‐oxazoline, MOB‐SOx , was synthesized from commercially available compounds. MOB‐SOx and 2‐ethyl‐2‐oxazoline (EtOx) were simultaneously polymerized yielding well defined copolymers with narrow molar mass distributions and target polymer chain length. The copolymerization was initiated by N‐methyl‐2‐methyl‐2‐oxazolinium triflate ( MeOxOTf ). After quantitative deprotection, poly(2‐oxazoline) with pendant thiol groups was obtained. The thiol groups were quantitatively added to the double bond of N‐phenyl‐acrylamide ( PhA ) and benzylmaleimide ( BzM ). Graft copolymers were obtained by reaction of those SH containing polymers with poly(2‐methyl‐2‐oxazoline)s bearing acrylamide ( PMeOx 10 A ) and maleimide ( PMeOx 10 M ) as terminal reactive groups.

  相似文献   


18.
The synthesis of poly(2‐ethyl‐2‐oxazoline)‐b‐linear poly(ethylenimine) (PEtOx‐b‐LPEI) copolymers by selective basic hydrolysis of PEtOx‐b‐poly(2‐H‐2‐oxazoline) (PEtOx‐b‐PHOx) is described. For this purpose, an easy method for the preparation of the 2‐H‐2‐oxazoline (HOx) monomer was developed. Based on the microwave‐assisted polymerization kinetics for this monomer, PEtOx‐b‐PHOx copolymers were prepared. Subsequently, the block copolymers were selectively hydrolyzed to PEtOx‐b‐LPEI under basic conditions. The success of the polymerizations and subsequent post‐polymerization reactions was demonstrated by 1H NMR spectroscopy and MALDI‐TOF‐MS investigations of the obtained polymers. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

19.
Thermoresponsive polymer micelles are promising drug and radionuclide carriers with a strong passive targeting effect into solid tumors. We have synthesized ABA triblock copolymers poly[2‐methyl‐2‐oxazoline‐block‐(2‐isopropyl‐2‐oxazoline‐co‐2‐butyl‐2‐oxazoline)‐block‐2‐methyl‐2‐oxazoline]. These polymers are molecularly dissolved in aqueous millieu below the cloud point temperature (CPT) of the thermoresponsive central block and above CPT form polymer micelles at CMC 5–10 × 10?5 g · mL?1 with diameter ≈200 nm. The phenolic moiety introduced into the copolymer allowed radionuclide labeling with iodine‐125 ongoing in good yield with sufficient in vitro stability under model conditions.

  相似文献   


20.
Block and random copolymers of poly(3‐hexylthiophene) and poly[3‐(2‐(6‐carboxyhexyl)methyl)thiophene] with side‐chain carboxylic functionality ((P3HT‐b‐P3COOH) and (P3HT‐r‐P3COOH) were developed by Grignard Metathesis (GRIM) polymerization. The carboxylic functionality was introduced in the side chain via the oxazoline route. Both the block and random polythiophene copolymers were complexed with pyridine functionalized perylene bisimide to obtain supramolecular block and random polymer complexes. The complex formation in both systems was confirmed by 1H NMR, WXRD and SAXS studies. An expansion of d spacing upon complex formation was observed in both the block and random copolymer, which could be traced by WXRD. Hole and electron mobilities measured for the supramolecular complexes indicated values which were higher by an order of magnitude for the supramolecular block complex (μh ≈ 2.9 × 10−4 cm2/Vs; μe ≈ 3.1 × 10−6 cm2/Vs) as compared to the random (μh ≈ 1.4 × 10−5 cm2/Vs; μe ≈ 4.7 × 10−7 cm2/Vs) copolymer. These results are indicative of the higher degree of disorder prevailing in the films of random copolymer system compared to the block copolymer. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1574–1583  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号