首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two stable, non‐interpenetrated MOFs, PCN‐521 and PCN‐523, were synthesized by a symmetry‐guided strategy. Augmentation of the 4‐connected nodes in the fluorite structure with a rigid tetrahedral ligand and substitution of the 8‐connected nodes by the Zr/Hf clusters yielded MOFs with large octahedral interstitial cavities. They are the first examples of Zr/Hf MOFs with tetrahedral linkers. PCN‐521 has the largest BET surface area (3411 m2 g‐1), pore size (20.5×20.5×37.4 Å) and void volume (78.5%) of MOFs formed from tetrahedral ligands. This work not only demonstrates a successful implementation of rational design of MOFs with desired topology, but also provides a systematic way of constructing non‐interpenetrated MOFs with high porosity.  相似文献   

2.
We present a systematic study of metal–organic frameworks (MOFs) for the storage of oxygen. The study starts with grand canonical Monte Carlo simulations on a suite of 10 000 MOFs for the adsorption of oxygen. From these data, the MOFs were down selected to the prime candidates of HKUST‐1 (Cu‐BTC) and NU‐125, both with coordinatively unsaturated Cu sites. Oxygen isotherms up to 30 bar were measured at multiple temperatures to determine the isosteric heat of adsorption for oxygen on each MOF by fitting to a Toth isotherm model. High pressure (up to 140 bar) oxygen isotherms were measured for HKUST‐1 and NU‐125 to determine the working capacity of each MOF. Compared to the zeolite NaX and Norit activated carbon, NU‐125 has an increased excess capacity for oxygen of 237 % and 98 %, respectively. These materials could ultimately prove useful for oxygen storage in medical, military, and aerospace applications.  相似文献   

3.
Metal–organic frameworks (MOFs) are promising materials with fascinating properties. Their widespread applications are sometimes hindered by the intrinsic instability of frameworks. However, this instability of MOFs can also be exploited for useful purposes. Herein, we report the use of MOFs as metal ion precursors for constructing functional nanocomposites by utilizing the instability of MOFs. The heterogeneous growth process of nanostructures on substrates involves the release of metal ions, nucleation on substrates, and formation of a covering structure. Specifically, the synthesized CoS with carbon nanotubes as substrates display enhanced performance in a lithium‐ion battery. Such strategy not only presents a new way for exploiting the instability of MOFs but also supplies a prospect for designing versatile functional nanocomposites.  相似文献   

4.
Metal–organic frameworks are having a tremendous impact on novel strategic applications, with prospective employment in industrially relevant processes. The development of such processes is strictly dependent on the ability to generate materials with high yield efficiency and production rate. We report a versatile and highly efficient method for synthesis of metal–organic frameworks in large quantities using continuous flow processing under microwave irradiation. Benchmark materials such as UiO‐66, MIL‐53(Al), and HKUST‐1 were obtained with remarkable mass, space–time yields, and often using stoichiometric amounts of reactants. In the case of UiO‐66 and MIL‐53(Al), we attained unprecedented space–time yields far greater than those reported previously. All of the syntheses were successfully extended to multi‐gram high quality products in a matter of minutes, proving the effectiveness of continuous flow microwave technology for the large scale production of metal–organic frameworks.  相似文献   

5.
Microporous metal–organic frameworks (MOFs) are comparatively new porous materials. Because the pores within such MOFs can be readily tuned through the interplay of both metal‐containing clusters and organic linkers to induce their size‐selective sieving effects, while the pore surfaces can be straightforwardly functionalized to enforce their different interactions with gas molecules, MOF materials are very promising for gas separation. Furthermore, the high porosities of such materials can enable microporous MOFs with optimized gas separation selectivity and capacity to be targeted. This Focus Review highlights recent significant advances in microporous MOFs for gas separation.  相似文献   

6.
7.
Defect engineering in metal–organic frameworks (MOFs) is an exciting concept for tailoring material properties, which opens up novel opportunities not only in sorption and catalysis, but also in controlling more challenging physical characteristics such as band gap as well as magnetic and electrical/conductive properties. It is challenging to structurally characterize the inherent or intentionally created defects of various types, and there have so far been few efforts to comprehensively discuss these issues. Based on selected reports spanning the last decades, this Review closes that gap by providing both a concise overview of defects in MOFs, or more broadly coordination network compounds (CNCs), including their classification and characterization, together with the (potential) applications of defective CNCs/MOFs. Moreover, we will highlight important aspects of “defect‐engineering” concepts applied for CNCs, also in comparison with relevant solid materials such as zeolites or COFs. Finally, we discuss the future potential of defect‐engineered CNCs.  相似文献   

8.
Interactions between alkali‐metal azides and metal–organic framework (MOF) derivatives, namely, the first and third members of the isoreticular MOF (IRMOF) family, IRMOF‐1 and IRMOF‐3, are studied within the density functional theory (DFT) paradigm. The investigations take into account different models of the selected IRMOFs. The mutual influence between the alkali‐metal azides and the π rings or Zn centers of the involved MOF derivatives are studied by considering the interactions both of the alkali‐metal cations with model aromatic centers and of the alkali‐metal azides with distinct sites of differently sized models of IRMOF‐1 and IRMOF‐3. Several exchange and correlation functionals are employed to calculate the corresponding interaction energies. Remarkably, it is found that, with increasing alkali‐metal atom size, the latter decrease for cations interacting with the π‐ring systems and increase for the azides interacting with the MOF fragments. The opposite behavior is explained by stabilization effects on the azide moieties and determined by the Zn atoms, which constitute the inorganic vertices of the IRMOF species. Larger cations can, in fact, coordinate more efficiently to both the aromatic center and the azide anion, and thus stabilizing bridging arrangements of the azide between one alkali‐metal and two Zn atoms in an η2 coordination mode are more favored.  相似文献   

9.
A porous metal–organic framework, Mn(H3O)[(Mn4Cl)3(hmtt)8] (POST‐65), was prepared by the reaction of 5,5′,10,10′,15,15′‐hexamethyltruxene‐2,7,12‐tricarboxylic acid (H3hmtt) with MnCl2 under solvothermal conditions. POST‐65(Mn) was subjected to post‐synthetic modification with Fe, Co, Ni, and Cu according to an ion‐exchange method that resulted in the formation of three isomorphous frameworks, POST‐65(Co/Ni/Cu), as well as a new framework, POST‐65(Fe). The ion‐exchanged samples could not be prepared by regular solvothermal reactions. The complete exchange of the metal ions and retention of the framework structure were verified by inductively coupled plasma–atomic emission spectrometry (ICP‐AES), powder X‐ray diffraction (PXRD), and Brunauer–Emmett–Teller (BET) surface‐area analysis. Single‐crystal X‐ray diffractions studies revealed a single‐crystal‐to‐single‐crystal (SCSC)‐transformation nature of the ion‐exchange process. Hydrogen‐sorption and magnetization measurements showed metal‐specific properties of POST‐65.  相似文献   

10.
11.
12.
Synthesizing 2D metal–organic frameworks (2D MOFs) in high yields and rational tailoring of the properties in a predictable manner for specific applications is extremely challenging. Now, a series of porphyrin‐based 2D lanthanide MOFs (Ln‐TCPP, Ln=Ce, Sm, Eu, Tb, Yb, TCPP=tetrakis(4‐carboxyphenyl) porphyrin) with different thickness were successfully prepared in a household microwave oven. The as‐prepared 2D Ln‐TCPP nanosheets showed thickness‐dependent photocatalytic performances towards photooxidation of 1,5‐dihydroxynaphthalene (1,5‐DHN) to synthesize juglone. Particularly, the Yb‐TCPP displayed outstanding photodynamic activity to generate O2? and 1O2. This work not only provides fundamental insights into structure designing and property tailoring of 2D MOFs nanosheets, but also pave a new way to improve the photocatalytic performance.  相似文献   

13.
Two Ln26@CO3 (Ln=Dy and Tb) cluster‐based lanthanide–transition‐metal–organic frameworks (Ln MOFs) formulated as [Dy26Cu3(Nic)24(CH3COO)8(CO3)11(OH)26(H2O)14]Cl ? 3 H2O ( 1 ; HNic=nicotinic acid) and [Tb26NaAg3(Nic)27(CH3COO)6(CO3)11(OH)26Cl(H2O)15] ? 7.5 H2O ( 2 ) have been successfully synthesized by hydrothermal methods and characterized by IR, thermogravimetric analysis (TGA), elemental analysis, and single X‐ray diffraction. Compound 1 crystallizes in the monoclinic space group Cc with a=35.775(12) Å, b=33.346(11) Å, c=24.424(8) Å, β=93.993(5)°, V=29065(16) Å3, whereas 2 crystallizes in the triclinic space group P with a=20.4929(19) Å, b=24.671(2) Å, c=29.727(3) Å, α=81.9990(10)°, β=88.0830(10)°, γ=89.9940(10)°, V=14875(2) Å3. Structural analysis indicates the framework of 1 is a 3D perovskite‐like structure constructed out of CO3@Dy26 building units and Cu+ centers by means of nicotinic acid ligand bridging. In 2 , however, nanosized CO3@Tb26 units and [Ag3Cl]2+ centers are connected by Nic? bridges to give rise to a 2D structure. It is worth mentioning that this kind of 4d–4f cluster‐based MOF is quite rare as most of the reported analogous compounds are 3d–4f ones. Additionally, the solid‐state emission spectra of pure compound 2 at room temperature suggest an efficient energy transfer from the ligand Nic? to Tb3+ ions, which we called the “antenna effect”. Compound 2 shows a good two‐photon absorption (TPA) with a TPA coefficient of 0.06947 cm GM?1 (1 GM=10?50 cm4 s photon?1), which indicates that compound 2 might be a good choice for third‐order nonlinear optical materials.  相似文献   

14.
15.
In recent years, metal–organic frameworks (MOFs) have become an area of intense research interest because of their adjustable pores and nearly limitless structural diversity deriving from the design of different organic linkers and metal structural building units (SBUs). Among the recent great challenges for scientists include switchable MOFs and their corresponding applications. Switchable MOFs are a type of smart material that undergo distinct, reversible, chemical changes in their structure upon exposure to external stimuli, yielding interesting technological applicability. Although the process of switching shares similarities with flexibility, very limited studies have been devoted specifically to switching, while a fairly large amount of research and a number of Reviews have covered flexibility in MOFs. This Review focuses on the properties and general design of switchable MOFs. The switching activity has been delineated based on the cause of the switching: light, spin crossover (SCO), redox, temperature, and wettability.  相似文献   

16.
17.
Materials that can recognize the changes in their local environment and respond by altering their inherent physical and/or chemical properties are strong candidates for future “smart” technology materials. Metal–organic frameworks (MOFs) have attracted a great deal of attention in recent years owing to their designable architecture, host–guest chemistry, and softness as porous materials. Despite this fact, studies on the tuning of the properties of MOFs by external stimuli are still rare. This review highlights the recent developments in the field of stimulus‐responsive MOFs or so‐called smart MOFs. In particular, the various stimuli used and the utility of stimulus‐responsive smart MOFs for various applications such as gas storage and separation, sensing, clean energy, catalysis, molecular motors, and biomedical applications are highlighted by using representative examples. Future directions in the developments of stimulus‐responsive smart MOFs and their applications are proposed from a personal perspective.  相似文献   

18.
Owing to their outstanding structural, chemical, and functional diversity, metal–organic frameworks (MOFs) have attracted considerable attention over the last two decades in a variety of energy‐related applications. Notably missing among these, until recently, were applications that required good charge transport coexisting with porosity and high surface area. Although most MOFs are electrical insulators, several materials in this class have recently demonstrated excellent electrical conductivity and high charge mobility. Herein we review the synthetic and electronic design strategies that have been employed thus far for producing frameworks with permanent porosity and long‐range charge transport properties. In addition, key experiments that have been employed to demonstrate electrical transport, as well as selected applications for this subclass of MOFs, will be discussed.  相似文献   

19.
20.
Two anionic metal–organic frameworks were successfully prepared based on pre‐designed flexible multicarboxylate ligands and indium cations. Owing to the flexibility of the bridging organic linkers, which could not themselves sustain the frameworks, both of the frameworks showed thermal instability and shrinkage after removal of guest solvent molecules. Inspired by bamboo, we used a guest‐dependent approach to tune the permanent porosity of the MOFs. In this approach, several tetraalkyammonium cations of different sizes were introduced into the channels by cation exchange to act as partitions and to support the main frameworks. This approach significantly enhanced the stability of the framework and its permanent porosity. Moreover, the gas‐adsorption properties (such as gate sorption, hysteresis, and selectivity) of the MOFs were also modulated by the judicious choice of guest cations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号