首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A new method in which supramolecular polymerization is promoted and controlled through self‐sorting is reported. The bifunctional monomer containing p‐phenylene and naphthalene moieties was prepared. Supramolecular polymerization is promoted by selective recognition between the p‐phenylene group and cucurbit[7]uril (CB[7]), and 2:1 complexation of the naphthalene groups with cucurbit[8]uril (CB[8]). The process can be controlled by tuning the CB[7] content. This development will enrich the field of supramolecular polymers with important advances towards the realization of molecular‐weight and structural control.  相似文献   

2.
Complexation of yellow diaminoazobenzenes 1 and 3 inside cucurbit[7]uril (CB[7]) results in the formation of purple‐colored CB[7] ? cis‐ 1? 2 H+ and CB[7] ? cis‐ 3? 2 H+ complexes, respectively. The high binding affinity and selectivity displayed by CB[7] toward 1 and 3 pays the >10 kcal mol?1 thermodynamic cost for this isomerization. We investigated the behavior of these complexes as a function of pH and observed large pKa shifts and high pH responsiveness, which are characteristic of cucurbit[n]uril molecular containers. The remarkable yellow to purple color change was utilized in the construction of an indicator displacement assay for biologically active amines 4 – 10 . This indicator displacement assay is capable of quantifying the pseudoephedrine ( 5 ) content in Sudafed tablets over the 5–350 μM range.  相似文献   

3.
We demonstrate a reversible shape‐morphing with concurrent fluorescence switching in the nanomaterials which are complexed with cucurbit[7]uril (CB[7]) in water. The cyanostilbene derivative alone forms ribbon‐like two‐dimensional (2D) nanocrystals with bright yellow excimeric emission in water (λem=540 nm, ΦF=42 %). Upon CB[7] addition, however, the ribbon‐like 2D nanocrystals immediately transform to spherical nanoparticles with significant fluorescence quenching and blue‐shifting (λem=490 nm, ΦF=1 %) through the supramolecular complexation of the cyanostilbene and CB[7]. Based on this reversible fluorescence switching and shape morphing, we could demonstrate a novel strategy of turn‐on fluorescence sensing of spermine and also monitoring of lysine decarboxylase activity.  相似文献   

4.
Herein, we report the host–guest‐type complex formation between the host molecules cucurbit[7]uril (CB[7]), β‐cyclodextrin (β‐CD), and dibenzo[24]crown‐8 ether (DB24C8) and a newly synthesized triphenylamine (TPA) derivative 1 X3 as the guest component. The host–guest complex formation was studied in detail by using 1H NMR, 2D NOESY, UV/Vis fluorescence, and time‐resolved emission spectroscopy. The chloride salt of the TPA derivative was used for recognition studies with CB[7] and β‐CD in an aqueous medium. The restricted internal rotation of the guest molecule on complex formation with either of these two host molecules was reflected in the enhancement of the emission quantum yield and the average excited‐state lifetime for the triphenylamine‐based excited states. Studies with DB24C8 as the host molecule were performed in dichloromethane, a medium that maximizes the noncovalent interaction between the host and guest fragments. The Förster resonance energy transfer (FRET) process involving DB24C8 and 1 (PF6)3, as the donor and acceptor fragments, respectively, was established by electrochemical, steady‐state emission, and time‐correlated single‐photon counting studies.  相似文献   

5.
We designed and synthesized the three molecular tweezers 1 a – c 4+ containing an electron acceptor 4,4‐bipyridinium (BPY2+) unit in each of the two arms and an (R)‐2,2‐dioxy‐1,1‐binaphthyl (BIN) unit that plays the role of chiral centre and the hinge of the structure. Each BPY2+ unit is connected to the BIN hinge by an alkyl chain formed by two‐ ( 1 a 4+), four‐ ( 1 b 4+), or six‐CH2 ( 1 c 4+) groups. The behavior of 1 a – c 4+ upon chemical or photochemical reduction in the absence and in the presence of cucurbit[8]uril (CB[8]) or cucurbit[7]uril (CB[7]) as macrocyclic hosts for the bipyridinium units has been studied in aqueous solution. A detailed analysis of the UV/Vis absorption and circular dichroism (CD) spectra shows that the helicity of the BIN unit can be reversibly modulated by reduction of the BPY2+ units, or by association with cucurbiturils. Upon reduction of 1 a – c 4+ compounds, the formed BPY+ . units undergo intramolecular dimerization with a concomitant change in the BIN dihedral angle, which depends on the length of the alkyl spacers. The alkyl linkers also play an important role in association to cucurbiturils. Compound 1 a 4+, because of its short carbon chain, associates to the bulky CB[8] in a 1:1 ratio, whereas in the case of the smaller host compound CB[7] a 1:2 complex is obtained. Compounds 1 b 4+ and 1 c 4+, which have longer linkers, associate to two cucurbiturils regardless of their sizes. In all cases, association with CB[8] causes an increase of the BIN dihedral angle, whereas the formation of CB[7] complexes causes an angle decrease. Reduction of the CB[8] complexes results in an enhancement of the BPY+ . dimerization with respect to free 1 a – c 4+ and causes a noticeable decrease of the BIN dihedral angle, because the BPY+ . units of the two arms have to enter into the same macrocycle. The dimer formation in the CB[8] complexes characterized by a 1:2 ratio implies the release of one macrocycle showing that the binding stoichiometry of these host–guest complexes can be switched from 1:2 to 1:1 by changing the redox state of the guest. When the reduction is performed on the CB[7] complexes, dimer formation is totally inhibited, as expected because the CB[7] cavity cannot host two BPY+ . units.  相似文献   

6.
The teratogenicity of the pesticide nereistoxin (NTX) and its derivative thiocyclam (THI) towards aquatic life was dramatically constrained by a synthetic nanoreceptor, cucurbit[7]uril, through selective encapsulation of the pesticides (KCB[7]‐NTX of 3.24(±0.31)×106 m ?1 and KCB[7]‐THI of 7.46(±0.10)×105 m ?1), as evidenced by the rate of hatchability, morphology development, and tyrosinase activity of zebrafish larvae incubated with the pesticides (3–300 μm ) in the absence and in the presence of 300 μm cucurbit[7]uril, demonstrating the significant potential of the nanoreceptor in managing ecological pollution of these pesticides.  相似文献   

7.
A supramolecular strategy for detecting specific proteins in complex media by using hyperpolarized 129Xe NMR is reported. A cucurbit[6]uril (CB[6])‐based molecular relay was programmed for three sequential equilibrium conditions by designing a two‐faced guest (TFG) that initially binds CB[6] and blocks the CB[6]–Xe interaction. The protein analyte recruits the TFG and frees CB[6] for Xe binding. TFGs containing CB[6]‐ and carbonic anhydrase II (CAII)‐binding domains were synthesized in one or two steps. X‐ray crystallography confirmed TFG binding to Zn2+ in the deep CAII active‐site cleft, which precludes simultaneous CB[6] binding. The molecular relay was reprogrammed to detect avidin by using a different TFG. Finally, Xe binding by CB[6] was detected in buffer and in E. coli cultures expressing CAII through ultrasensitive 129Xe NMR spectroscopy.  相似文献   

8.
Rotaxane is a kind of classic supramolecule, which is usually constructed from a number of macrocycles and one axis molecule. Herein, we have expanded the supramolecular structure of [n]rotaxane to offer a precise definition of (pseudo)[n,m]rotaxane for accurately describing the two kinds of (pseudo)rotaxanes structures, which are self‐assembled from cucurbit[7/8]uril (CB[7/8]) and viologen‐naphthalene derivative, respectively. Furthermore, these CB‐based pseudorotaxanes exhibit varied photophysical properties, stimuli‐responsive behavior triggered by competitive guest, and self‐sorting behavior.  相似文献   

9.
The ability of two water‐soluble acyclic cucurbit[n]uril (CB[n]) type containers, whose hydrophobic cavity is defined by a glycoluril tetramer backbone and terminal aromatic (benzene, naphthalene) sidewalls, to act as solubilizing agents for hydrocarbons in water is described. 1H NMR spectroscopy studies and phase‐solubility diagrams establish that the naphthalene‐walled container performs as well as, or better than, CB[7] and CB[8] in promoting the uptake of poorly soluble hydrocarbons into aqueous solution through formation of host–hydrocarbon complexes. The naphthalene‐walled acyclic CB[n] container is able to extract large hydrocarbons from crude oil into aqueous solution.  相似文献   

10.
《化学:亚洲杂志》2018,13(19):2818-2823
The development of artificial self‐assembling systems with dynamic photo‐regulation features in aqueous solutions has drawn great attention owing to the potential applications in fabricating elaborate biological materials. Here we demonstrate the fabrication of water‐soluble cucurbit[8]uril (CB[8])‐mediated supramolecular polymers by connecting the fluorinated azobenzene (FAB) containing monomers through host‐enhanced heteroternary π–π stacking interactions. Benefiting from the unique visible‐light‐induced EZ photoisomerization of the FAB photochromophores, the encapsulation behaviors between the CB[8] macrocycle and the monomers could be regulated upon visible light irradiation, resulting in the depolymerization of such CB[8]‐mediated supramolecular polymers.  相似文献   

11.
A two‐stage mediated near‐infrared (NIR) emissive supramolecular assembly for lysosome‐targeted cell imaging is presented. 4,4′‐Anthracene‐9,10‐diylbis(ethene‐2,1‐diyl))bis(1‐ethylpyridin‐1‐ium) bromide (ENDT) was synthesized as an organic dye with weak fluorescence emission at 625 nm. When ENDT complexes with cucurbit[8]uril (CB[8]), this binary supramolecular complex assembles into nanorods with a near‐infrared fluorescence emission (655 nm) and fluorescence enhancement as the first stage. Such supramolecular complexes interact with lower‐rim dodecyl‐modified sulfonatocalix[4]arene (SC4AD) to form nanoparticles for further fluorescence enhancement as the second stage. Furthermore, based on a co‐staining experiment with LysoTracker Blue, such nanoparticles can be applied in NIR lysosome‐targeted cell imaging.  相似文献   

12.
The present study describes non-covalent interaction and complexation behaviour of sodium ascorbate (SA) with cucurbit[6]uril (CB[6]) at neutral pH in aqueous Na2SO4 solution. The interaction behaviour is investigated using various analytical techniques like NMR, UV–Vis, fluorescence, TGA and DRS. The substantial increase in the intensity of emission and absorption spectra of sodium ascorbate is observed. The Benesi–Hildebrand evaluation method is used to determine the stoichiometry and equilibrium constant of the cucurbit[6]uril–sodium ascorbate complex, which suggested the 1:1 complex. Time-dependent 1H NMR, 13C CP MAS and CD studies also echoed non-covalent interaction between SA with CB[6].  相似文献   

13.
The blue fluorescence of acridizinium bromide (ADZ+) and the green fluorescence of 9-aminoacridizinium bromide (AADZ+) in aqueous solutions can be almost entirely switched off upon the double inclusion of these guests in the cavity of cucurbit[8]uril (CB[8]) owing to the formation of a nonfluorescent, noncovalent dimer complex, and then fluorescence can be effectively restored by adding cucurbit[7]uril (CB[7]) to the complex because it competitively extracts the fluorophores out of the CB[8] cavity.  相似文献   

14.
The inclusion compound of macrocyclic cavitand cucurbit[8]uril (CB[8]) with the nickel(II) complex containing the tetraazamacrocyclic ligand cyclam, {[Ni(cyclam)]@CB[8]}Cl2··16H2O (1), and the inclusion compounds of CB[8] with the copper(II) bis-ethylene-diamine complex, {trans-[Cu(en)2(H2O)2]@CB[8]}Cl2·{CB[8]}·42H2O (2a) and {trans-[Cu(en)2(H2O)2]@CB[8]}Cl2·17H2O (2b), were synthesized and characterized by X-ray diffraction analysis, IR and ESR spectroscopy, and electrospray mass spectrometry. Guest—host inclusion compounds can be directly synthesized starting from a metal complex and cucurbit[8]uril, as was exemplified by the preparation of compounds 2a and 2b.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2414–2419, November, 2004.  相似文献   

15.
The compound 2[Ca(H2O)3 (DMF@CB[6])] · 2(BTC) · 15H2O ( CCUT ‐ 102 , CB[6] = cucurbit[6]uril; H3BTC = 1,3,5‐benzenetricarboxylic acid) was synthesized using the approach of organic guest‐induced formation of polymers or frameworks based on the coordination of metal ions and cucurbit[n]urils. The compound was characterized by X‐ray diffraction analysis, PXRD, IR spectroscopy, thermogravimetric and elemental analyses. According to the X‐ray diffraction data, the calcium atom is coordinated by the oxygen atoms of the CB[6] molecule, water molecules, and N ,N‐dimethylformamide (DMF). The internal cavity of CB[6] is occupied by DMF. Each H3BTC molecule interacts the CB[6] molecules through π?π interactions between aromatic rings of H3BTC and the rings of CB[6]. The luminescence behaviors and sensing properties of CCUT ‐ 102 in different solvents were also studied.  相似文献   

16.
Nanoscaled coordination polymers based on biologically prevalent ions have potential applications in drug delivery and biomedical imaging. Herein, coordination polymer nanoparticles of anionic porphyrins, including meso‐tetra(4‐carboxyphenyl)‐porphyrin (H2TCPP4?) and meso‐tetra(4‐sulfonatophenyl)‐porphyrin (H2TPPS4?), and alkaline or alkaline earth metal cations, such as K+ and Ca2+, were constructed in aqueous solution in the presence of cucurbit[7]uril (CB7) or cucurbit[8]uril (CB8). UV/Vis absorption and fluorescence spectroscopy, dynamic light scattering (DLS), scanning electron spectroscopy (SEM), and atomic force microscopy (AFM) were applied to explore the assembly and particle formation of porphyrin anions and metal cations mediated by CBn. The particle size depends on the kinds of CBn and metal cations and their concentrations. The uptake of H2TPPS4? particles by tumor cells (A549 cells) was found to be more efficient than H2TPPS4? at 37 °C, showing the application potential of such assembled particles in biology and medicine.  相似文献   

17.
A novel side‐chain polypseudorotaxanes P4VBVBu/CB[7] was synthesized from poly‐Nn‐butyl‐N′‐(4‐vinylbenzyl)‐4,4′‐bipyridinium bromide chloride (P4VBVBu) and cucurbit [7]uril (CB[7]) in water by simple stirring at room temperature. CB[7] beads are localized on viologen units in side chains of polypseudorotaxanes as shown by 1H NMR, IR, XRD, and UV–vis studies, and it is considered that the hydrophobic and charge‐dipole interactions are the driving forces. TGA data show that thermal stability of the polypseudorotaxanes increases with the adding of CB[7] threaded. DLS data show that P4VBVBu and CB[7] could form polypseudorotaxanes, and the average hydrodynamic radius of the polypseudorotaxanes increases with increasing the concentration of CB[7]. The typical cyclic voltammograms indicate that the oxidation reduction characteristic of P4VBVBu is remarkably affected by the addition of CB[7] because of the formation of polypseudorotaxanes and the shielding effects of CB[7] threaded on the viologen units of polypseudorotaxanes. With the increase of the concentration of KBr or K2SO4, the formation of the polypseudorotaxanes was inhibited due to the shielding effects of both Br? or SO to viologen ion and K+ to CB[7] by UV–vis. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2135–2142, 2010  相似文献   

18.
The use of cucurbit[8]uril as a molecular host has emerged in the chemical literature as a reliable strategy for the creation of dynamic chemical systems, owing to its ability to form homo‐ and heteroternary complexes in aqueous media with appropriate molecular switches as guests. In this manner, CB[8]‐based supramolecular switches can be designed in a predictable and modular fashion, through the selection of appropriate guests able to condition the redox, photochemical, or pH‐triggered behavior of tailored multicomponent systems. Furthermore, CB[8] allows the implementation of dual/triple and linear/orthogonal stimuli‐dependent properties into these molecular devices by a careful selection of the guests. This versatility in their design gives these supramolecular switches great potential for the rational development of new materials, in which their function is not only determined by the custom‐made stimuli‐responsiveness, but also by the transient aggregation/disaggregation of homo‐ or heteromeric building blocks.  相似文献   

19.
Serendipitously, mono‐allyloxylated cucurbit[7]uril (AO1CB[7]) was discovered to act as an unconventional amphiphile which self‐assembles into light‐responsive vesicles (AO1CB[7]VC) in water. Although the mono‐allyloxy group, directly tethered on the periphery of CB[7], is much shorter (C4) than the hydrophobic tails of conventional amphiphiles, it played an important role in vesicle formation. Light‐activated transformation of the allyloxy group by conjugation with glutathione was exploited as a remote tool to disrupt the vesicle. The vesicle showed on‐demand release of cargo upon irradiation by a laser, after they were internalized into cancer cells. This result demonstrated the potential of AO1CB[7]VC as a new type of light‐responsive intracellular delivery vehicle for the release of therapeutic cargo, within cells, on demand.  相似文献   

20.
In moderately acidic aqueous solutions, flavylium compounds undergo a pH‐, and in some cases, light‐dependent array of reversible chemical reactions. This network can be described as a single acid–base reaction involving a flavylium cation (acidic form) and a mixture of basic forms (quinoidal base, hemiketal and cis and trans chalcones). The apparent pKa of the system and the relative mole fractions of the basic forms can be modulated by the interaction with cucurbit[7]uril. The system is studied by using 1H NMR spectroscopy, UV/Vis spectroscopy, flash photolysis, and steady‐state irradiation. Of all the network species, the flavylium cation possesses the highest affinity for cucurbit[7]uril. The rate of interconversion between flavylium cation and the basic species (where trans‐chalcone is dominant) is approximately nine times lower inside the cucurbit[7]uril.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号