首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The doppel protein (Dpl) is the first homologue of the prion protein (PrPC) to be discovered; it is overexpressed in transgenic mice that lack the prion gene, resulting in neurotoxicity. The whole prion protein is able to inhibit Dpl neurotoxicity, and its N‐terminal domain is the determinant part of the protein function. This region represents the main copper(II) binding site of PrPC. Dpl is able to bind at least one copper ion, and the specific metal‐binding site has been identified as the histidine residue at the beginning of the third helical region. However, a reliable characterization of copper(II) coordination features has not been reported. In a previous paper, we studied the copper(II) interaction with a peptide that encompasses only the loop region potentially involved in metal binding. Nevertheless, we did not find a complete match between the EPR spectroscopic parameters of the copper(II) complexes formed with the synthesized peptide and those reported for the copper(II) binding sites of the whole protein. Herein, the synthesis of the human Dpl peptide fragment hDpl(122–139) (Ac‐KPDNKLHQQVLWRLVQEL‐NH2) and its copper(II) complex species are reported. This peptide encompasses the third α helix and part of the loop linking the second and the third helix of human doppel protein. The single‐point‐mutated peptide, hDpl(122–139)D124N, in which aspartate 124 replaces an asparagine residue, was also synthesized. This peptide was used to highlight the role of the carboxylate group on both the conformation preference of the Dpl fragment and its copper(II) coordination features. NMR spectroscopic measurements show that the hDpl(122–139) peptide fragment is in the prevailing α‐helix conformation. It is localized within the 127–137 amino acid residue region that represents a reliable conformational mimic of the related protein domain. A comparison with the single‐point‐mutated hDpl(122–139)D124N reveals the significant role played by the aspartic residue in addressing the peptide conformation towards a helical structure. It is further confirmed by CD measurements. Potentiometric titrations were carried out in aqueous solutions to obtain the stability constant values of the species formed by copper(II) with the hDpl peptides. Spectroscopic studies (EPR, NMR, CD, UV/Vis) were performed to characterize the coordination environments of the different metal complexes. The EPR parameters of the copper(II) complexes with hDpl(122–139) match those of the previously reported copper(II) binding sites of the whole hDpl. Addition of the copper(II) ion to the peptide fragment does not alter the helical conformation of hDpl(122–139), as shown by CD spectra in the far‐UV region. The aspartate‐driven preorganized secondary structure is not significantly modified by the involvement of Asp124 in the copper(II) complex species that form in the physiological pH range. To elaborate on the potential role of copper(II) in the recently reported interaction between the PrPC and Dpl, the affinity of the copper(II) complexes towards the prion N terminus domain and the binding site of Dpl was reported.  相似文献   

2.
A 31-mer polypeptide, which encompasses residues 84-114 of human prion protein HuPrP(84-114) and contains three histidyl residues, namely one from the octarepeat (His85) and two histidyl residues from outside the octarepeat region (His96 and His111), and its mutants with two histidyl residues HuPrP(84-114)His85Ala, HuPrP(84-114) His96Ala, HuPrP(84-114)His111Ala and HuPrP(91-115) have been synthesised and their Cu2+ complexes studied by potentiometric and spectroscopic (UV/Vis, CD, EPR, ESI-MS) techniques. The results revealed a high Cu2+-binding affinity of all peptides, and the spectroscopic studies made it possible to clarify the coordination mode of the peptides in the different complex species. The imidazole nitrogen donor atoms of histidyl residues are the exclusive metal-binding sites below pH 5.5, and they have a preference for macrochelate structure formation. The deprotonation and metal-ion coordination of amide functions take place by increasing the pH; all of the histidines can be considered to be independent metal-binding sites in these species. As a consequence, di- and trinuclear complexes can be present even in equimolar samples of the metal ion and peptides, but the ratios of polynuclear species do not exceed the statistically expected ones; this excludes the possibility of cooperative Cu2+ binding. The species with a (N(im),N,N)-binding mode are favoured around pH 7, and their stability is enhanced by the macrochelation from another histidyl residue in the mononuclear complexes. The independence of the histidyl sites results in the existence of coordination isomers and the preference for metal binding follows the order of: His111>His96>His85. Deprotonation and metal-ion coordination of the third amide functions were detected in slightly alkaline solutions at each of the metal-binding sites; all had a (N(im),N,N,N)-coordination mode. Spectroscopic measurements also made it clear that the four lysyl amino groups of the peptides are not metal-binding sites in any cases.  相似文献   

3.
Type‐2 diabetes (T2D) is considered to be a potential threat on a global level. Recently, T2D has been listed as a misfolding disease, such as Alzheimer's and Parkinson's diseases. Human islet amyloid polypeptide (hIAPP) is a molecule cosecreted in pancreatic β cells and represents the main constituent of an aggregated amyloid found in individuals affected by T2D. The trace‐element serum level is significantly influenced during the development of diabetes. In particular, the dys‐homeostasis of Cu2+ ions may adversely affect the course of the disease. Conflicting results have been reported on the protective role played by complex species formed by Cu2+ ions with hIAPP or its peptide fragments in vitro. The histidine (His) residue at position 18 represents the main binding site for the metal ion, but contrasting results have been reported on other residues involved in metal‐ion coordination, in particular those toward the N or C terminus. Sequences that encompass regions 17–29 and 14–22 were used to discriminate between the two models of the hIAPP coordination mode. Due to poor solubility in water, poly(ethylene glycol) (PEG) derivatives were synthesized. A peptide fragment that encompasses the 17–29 region of rat amylin (rIAPP) in which the arginine residue at position 18 was substituted by a histidine residue was also obtained to assess that the PEG moiety does not alter the peptide secondary structure. The complex species formed by Cu2+ ions with Ac‐PEG‐hIAPP(17–29)‐NH2, Ac‐rIAPP(17–29)R18H‐NH2, and Ac‐PEG‐hIAPP(14–22)‐NH2 were studied by using potentiometric titrations coupled with spectroscopic methods (UV/Vis, circular dichroism, and EPR). The combined thermodynamic and spectroscopic approach allowed us to demonstrate that hIAPP is able to bind Cu2+ ions starting from the His18 imidazole nitrogen atom toward the N‐terminus domain. The stability constants of copper(II) complexes with Ac‐PEG‐hIAPP(14–22)‐NH2 were used to simulate the different experimental conditions under which aggregate formation and oxidative stress of hIAPP has been reported. Speciation unveils: 1) the protective role played by increased amounts of Cu2+ ions on the hIAPP fibrillary aggregation, 2) the effect of adventitious trace amounts of Cu2+ ions present in phosphate‐buffered saline (PBS), and 3) a reducing fluorogenic probe on H2O2 production attributed to the polypeptide alone.  相似文献   

4.
Characterization of the copper(II) complexes formed with the tetraoctarepeat peptide at low and high metal‐to‐ligand ratios and in a large pH range, would provide a breakthrough in the interpretation of biological relevance of the different metal complexes of copper(II)‐tetraoctarepeat system. In the present work, the potentiometric, UV/Vis, circular dichroism (CD), and electron paramagnetic resonance (EPR) studies were carried out on copper(II) complexes with a PEG‐ylated derivative of the tetraoctarepeats peptide sequence (Ac‐PEG27‐(PHGGGWGQ)4‐NH2) and the peptide Ac‐(PHGGGWGQ)2‐NH2. Conjugation of tetraoctarepeat peptide sequence with polyethyleneglycol improved the solubility of the copper(II) complexes. The results enable a straightforward explanation of the conflicting results originated from the underestimation of all metal–ligand equilibria and the ensuing speciation. A complete and reliable speciation is therefore obtained with the released affinity and binding details of the main complexes species formed in aqueous solution. The results contribute to clarify the discrepancies of several studies in which the authors ascribe the redox activity of copper(II)‐tetraoctarepeat system considering only the average effects of several coexisting species with very different stoichiometries and binding modes.  相似文献   

5.
The metal‐coordinating properties of the prion protein (PrP) have been the subject of intense focus and debate since the first reports of its interaction with copper just before the turn of the century. The picture of metal coordination to PrP has been improved and refined over the past decade, but structural details of the various metal coordination modes have not been fully elucidated in some cases. In the present study, we have employed X‐ray absorption near‐edge spectroscopy as well as extended X‐ray absorption fine structure (EXAFS) spectroscopy to structurally characterize the dominant 1:1 coordination modes for CuII, CuI, and ZnII with an N‐terminal fragment of PrP. The PrP fragment corresponds to four tandem repeats representative of the mammalian octarepeat domain, designated as OR4, which is also the most studied PrP fragment for metal interactions, making our findings applicable to a large body of previous work. Density functional theory (DFT) calculations have provided additional structural and thermodynamic data, and candidate structures have been used to inform EXAFS data analysis. The optimized geometries from DFT calculations have been used to identify potential coordination complexes for multi‐histidine coordination of CuII, CuI, and ZnII in an aqueous medium, modelled using 4‐methylimidazole to represent the histidine side chain. Through a combination of in silico coordination chemistry as well as rigorous EXAFS curve‐fitting, using full multiple scattering on candidate structures derived from DFT calculations, we have characterized the predominant coordination modes for the 1:1 complexes of CuII, CuI, and ZnII with the OR4 peptide at pH 7.4 at atomic resolution, which are best represented as square‐planar [CuII(His)4]2+, digonal [CuI(His)2]+, and tetrahedral [ZnII(His)3(OH2)]2+, respectively.  相似文献   

6.

Abstract  

The tetrapeptides Ac-SKHM-NH2, Ac-TKHM-NH2, Ac-MKHS-NH2, Ac-S(OMe)KHM-NH2, and Ac-MKHS(OMe)-NH2 and the nonapeptides Ac-KTNSKHMAG-NH2 and Ac-KTNMKHSAG-NH2 were synthesized and their copper(II) complexes were studied by potentiometric, UV–Vis, circular dichroism (CD), and electron paramagnetic resonance (EPR) spectroscopic methods. These peptides mimic the 109–112 and 106–114 residues of the sequence of human prion protein. The imidazole-N donor atoms of histidyl residues were found to be the primary metal binding sites of all peptide fragments. This binding mode provides a good possibility for the cooperative deprotonation and metal ion coordination of two amide functions preceding histidine. The (Nim,N,N)-bonded species predominate in the pH range 5.5–7.0 and the free coordination sites of these species make possible the metal binding of weakly coordinating side chains. The comparison of the potentiometric and spectroscopic results revealed the stabilizing role of the oxygen donors of seryl, threonyl, or methoxyseryl residues of Ac-SKHM-NH2, Ac-TKHM-NH2, Ac-S(OMe)KHM-NH2, and Ac-KTNSKHMAG-NH2 containing the mutations in position 109. These interactions were, however, not observed in the peptides containing the specific amino acids in other locations of the peptide sequence.  相似文献   

7.
Brain copper imbalance plays an important role in amyloid‐β aggregation, tau hyperphosphorylation, and neurotoxicity observed in Alzheimer's disease (AD). Therefore, the administration of biocompatible metal‐binding agents may offer a potential therapeutic solution to target mislocalized copper ions and restore metallostasis. Histidine‐containing peptides and proteins are excellent metal binders and are found in many natural systems. The design of short peptides showing optimal binding properties represents a promising approach to capture and redistribute mislocalized metal ions, mainly due to their biocompatibility, ease of synthesis, and the possibility of fine‐tuning their metal‐binding affinities in order to suppress unwanted competitive binding with copper‐containing proteins. In the present study, three peptides, namely HWH , HKCH , and HAH , have been designed with the objective of reducing copper toxicity in AD. These tripeptides form highly stable albumin‐like complexes, showing higher affinity for CuII than that of Aβ(1‐40). Furthermore, HWH , HKCH , and HAH act as very efficient inhibitors of copper‐mediated reactive oxygen species (ROS) generation and prevent the copper‐induced overproduction of toxic oligomers in the initial steps of amyloid aggregation in the presence of CuII ions. These tripeptides, and more generally small peptides including the sequence His‐Xaa‐His at the N‐terminus, may therefore be considered as promising motifs for the future development of new and efficient anti‐Alzheimer drugs.  相似文献   

8.
Copper(II) complexes of the neurotoxic peptide fragments of human and chicken prion proteins were studied by potentiometric, UV-vis, CD, and EPR spectroscopic and ESI-MS methods. The peptides included the terminally blocked native and scrambled sequences of HuPrP106-126 (HuPrPAc106-126NH2 and ScrHuPrPAc106-126NH2) and also the nona- and tetrapeptide fragments of both the human and chicken prion proteins (HuPrPAc106-114NH2, ChPrPAc119-127NH2, HuPrPAc109-112NH2, and ChPrPAc122-125NH2). The histidyl imidazole-N donor atoms were found to be the major copper(II) binding sites of all peptides; 3N and 4N complexes containing additional 2 and 3 deprotonated amide-N donors, respectively, are the major species in the physiological pH range. The complex formation processes for nona- and tetrapeptides are very similar, supporting the fact that successive deprotonation and metal ion coordination of amide functions go toward the N-termini in the form of joined six- and five-membered chelates. As a consequence, the peptide sequences investigated here, related to the neurotoxic region of the human PrP106-126 sequence, show a higher metal-binding affinity than the octarepeat fragments. In the case of the HuPrP peptide sequences, a weak pH-dependent binding of the Met109 residue was also detected in the 3N-coordinated complexes.  相似文献   

9.
Designing small peptides that are capable of binding Cu2+ ions mainly through the side‐chain functionalities is a hard task because the amide nitrogen atoms strongly compete for Cu2+ ion coordination. However, the design of such peptides is important for obtaining biomimetic small systems of metalloenyzmes as well as for the development of artificial systems. With this in mind, a cyclic decapeptide, C‐Asp, which contained three His residues and one Asp residue, and its linear derivative, O‐Asp, were synthesized. The C‐Asp peptide has two Pro? Gly β‐turn‐inducer units and, as a result of cyclization, and as shown by CD spectroscopy, its backbone is constrained into a more defined conformation than O‐Asp, which is linear and contains a single Pro? Gly unit. A detailed potentiometric, mass spectrometric, and spectroscopic study (UV/Vis, CD, and EPR spectroscopy) showed that at a 1:1 Cu2+/peptide ratio, both peptides formed a major [CuHL]2+ species in the pH range 5.0–7.5 (C‐Asp) and 5.5–7.0 (O‐Asp). The corrected stability constants of the protonated species (log K*CuH(O?Asp)=9.28 and log K*CuH(C?Asp)=10.79) indicate that the cyclic peptide binds Cu2+ ions with higher affinity. In addition, the calculated value of Keff shows that this higher affinity for Cu2+ ions prevails at all pH values, not only for a 1:1 ratio but even for a 2:1 ratio. The spectroscopic data of both [CuHL]2+ species are consistent with the exclusive coordination of Cu2+ ions by the side‐chain functionalities of the three His residues and the Asp residue in a square‐planar or square‐pyramidal geometry. Nonetheless, although these data show that, upon metal coordination, both peptides adopt a similar fold, the larger conformational constraints that are present in the cyclic scaffold results in different behaviour for both [CuHL]2+ species. CD and NMR analysis revealed the formation of a more rigid structure and a slower Cu2+‐exchange rate for [CuH(C‐Asp)]2+ compared to [CuH(O‐Asp]2+. This detailed comparative study shows that cyclization has a remarkable effect on the Cu2+‐coordination properties of the C‐Asp peptide, which binds Cu2+ ions with higher affinity at all pH values, stabilizes the [CuHL]2+ species in a wider pH range, and has a slower Cu2+‐exchange rate compared to O‐Asp.  相似文献   

10.
The copper(II) binding features of the APP(145-155) and APP(145-157) fragments of the amyloid precursor protein, Ac-Glu-Thr-His-Leu-His-Trp-His-Thr-Val-Ala-Lys-NH2 and Ac-Glu-Thr-His-Leu-His-Trp-His-Thr-Val-Ala-Lys-Glu-Thr-NH2 were studied by NMR spectroscopy and NMR findings were supported by UV-vis, CD and EPR spectra. Potentiometric measurements were performed only for the more soluble Ac-Glu-Thr-His-Leu-His-Trp-His-Thr-Val-Ala-Lys-Glu-Thr-NH2 peptide fragment. The following was shown: (i) the imidazole rings of all the three His residues are involved in metal coordination; (ii) metal binding induces ionisation of Leu-148 and His-149 amide nitrogens that complete the donor set to copper(II) in the species dominant at neutral pH; (iii) the unusual coordination scheme of the His-Xxx-His-Xxx-His consensus sequence justifies the high specificity for Cu(II) when compared to SOD-like or albumin-like peptides or even in amyloid Abeta fragments. The present findings may represent the key for interpreting the observed requirement of His residues conservation for the redox cycling between Cu(II) and Cu(I) by soluble APP.  相似文献   

11.
The coordination chemistry of mixed‐ligand complexes continues to be an active area of research since these compounds have a wide range of applications. Many coordination polymers and metal–organic framworks are emerging as novel functional materials. Aminopyrimidine and its derivatives are flexible ligands with versatile binding and coordination modes which have been proven to be useful in the construction of organic–inorganic hybrid materials and coordination polymers. Thiophenecarboxylic acid, its derivatives and their complexes exhibit pharmacological properties. Cobalt(II) and copper(II) complexes of thiophenecarboxylate have many biological applications, for example, as antifungal and antitumor agents. Two new cobalt(II) and copper(II) complexes incorporating thiophene‐2‐carboxylate (2‐TPC) and 2‐amino‐4,6‐dimethoxypyrimidine (OMP) ligands have been synthesized and characterized by X‐ray diffraction studies, namely (2‐amino‐4,6‐dimethoxypyrimidine‐κN)aquachlorido(thiophene‐2‐carboxylato‐κO)cobalt(II) monohydrate, [Co(C5H3O2S)Cl(C6H9N3O2)(H2O)]·H2O, (I), and catena‐poly[copper(II)‐tetrakis(μ‐thiophene‐2‐carboxylato‐κ2O:O′)‐copper(II)‐(μ‐2‐amino‐4,6‐dimethoxypyrimidine‐κ2N1:N3)], [Cu2(C5H3O2S)4(C6H9N3O2)]n, (II). In (I), the CoII ion has a distorted tetrahedral coordination environment involving one O atom from a monodentate 2‐TPC ligand, one N atom from an OMP ligand, one chloride ligand and one O atom of a water molecule. An additional water molecule is present in the asymmetric unit. The amino group of the coordinated OMP molecule and the coordinated carboxylate O atom of the 2‐TPC ligand form an interligand N—H…O hydrogen bond, generating an S(6) ring motif. The pyrimidine molecules also form a base pair [R22(8) motif] via a pair of N—H…N hydrogen bonds. These interactions, together with O—H…O and O—H…Cl hydrogen bonds and π–π stacking interactions, generate a three‐dimensional supramolecular architecture. The one‐dimensional coordination polymer (II) contains the classical paddle‐wheel [Cu2(CH3COO)4(H2O)2] unit, where each carboxylate group of four 2‐TPC ligands bridges two square‐pyramidally coordinated CuII ions and the apically coordinated OMP ligands bridge the dinuclear copper units. Each dinuclear copper unit has a crystallographic inversion centre, whereas the bridging OMP ligand has crystallographic twofold symmetry. The one‐dimensional polymeric chains self‐assemble via N—H…O, π–π and C—H…π interactions, generating a three‐dimensional supramolecular architecture.  相似文献   

12.
The syntheses, spectroscopy and single crystal X‐ray structures of the multifunctional acrylamide‐derived ligand N‐pyrazolylpropanamide (= L) ( 1 ), and its complexes [L2CuCl2] ( 2 ) and [L4Co3Cl6] ( 3 ) with copper(II) and cobalt(II) chlorides, respectively, are described. The ligand 1 is easily obtained in one step by the reaction of pyrazole with acrylamide in a 1:1 molar ratio in the presence of trimethylbenzylammonium hydroxide as a basic catalyst. The reaction of CuCl2·2H2O with 1 in a 1:2 metal salt:ligand molar ratio in ethanol/‐triethylorthoformate solution gave coordination compound 2 . The crystal structure of 2 contains two seven‐membered chelate rings formed by two nitrogen atoms of the pyrazolyl groups and two weakly coordinated carbonyl oxygen atoms of the substituted amide moieties. Two chloride ions in the axial positions complete a distorted octahedral coordination environment around the CuII atom. The reaction of CoCl2·6H2O with 1 in a 1:2 metal salt:ligand molar ratio afforded the unusual zwitterionic complex 3 . The crystal structure of 3 contains a central cobalt atom in an octahedral coordination surrounded by four ligands in which two of them act as chelate ligands and the other two, coordinated via the carbonyl oxygen atoms of the amide moieties to this metal center, act as bridging ligands bonded to two CoCl3? units.  相似文献   

13.
A linear decapeptide containing three His and one Asp residues and a β‐turn‐inducing dProPro unit was synthesised. A detailed potentiometric, mass spectrometric and spectroscopic study showed that at a 1:1 ratio of CCu/Cpeptide this peptide formed a major [CuH(OdPro?Asp)]2+ species (pH range 5.5–7.0), in which the Cu2+ ion was bound to the His and Asp residues in square‐planar or square‐pyramidal geometries. The stability constant corrected for protonated species (log K*=9.33) is almost equal to the value obtained for the parent [CuH(O?Asp)]2+ species (log K*CuH(O‐Asp)=9.28), but lower than that obtained for the cyclic [CuH(C?Asp)]2+ complex (log K*CuH(C‐Asp)=10.79) previously published. Thus, the replacement of the ProGly unit by the stronger β‐turn‐inducing dProPro unit did not generate a more stable copper(II) species, although the OdPro?Asp peptide was structured in solution, as shown by circular dichroism (CD) spectroscopy. Interestingly, the calculated value of Keff showed that this peptide behaved similarly to the O?Asp or C?Asp counterparts, depending on the pH value. The cyclic voltammetry data indicated that the most easily reducible species were [CuH(O?Asp)]2+ (E0=262 mV versus a normal hydrogen electrode (NHE)) and [CuH(OdPro?Asp)]2+ (E0=294 mV versus NHE) complexes, the peptidic scaffolds of which are open. A lower value was obtained for [CuH(C?Asp)]2+ (E0=24 mV versus NHE). A different degree of non‐reversibility was observed for the three copper(II) complexes; this could reflect a different degree of flexibility in their respective peptidic scaffolds.  相似文献   

14.
The application of transition metal chelates as chemotherapeutic agents has the advantage that they can be used as a scaffold around which ligands with DNA recognition elements can be anchored. The facile substitution of these components allows for the DNA recognition and binding properties of the metal chelates to be tuned. Copper is a particularly interesting choice for the development of novel metallodrugs as it is an endogenous metal and is therefore less toxic than other transition metals. The title compound, [Cu(C16H11N2O)2], was synthesized by reacting N‐(quinolin‐8‐yl)benzamide and the metal in a 2:1 ratio. Ligand coordination required deprotonation of the amide N—H group and the isolated complex is therefore neutral. The metal ion adopts a flattened tetrahedral coordination geometry with the ligands in a pseudo‐trans configuration. The free rotation afforded by the formal single bond between the amide group and phenyl ring allows the phenyl rings to rotate out‐of‐plane, thus alleviating nonbonded repulsion between the phenyl rings and the quinolyl groups within the complex. Weak C—H…O interactions stabilize a dimer in the solid state. Density functional theory (DFT) simulations at the PBE/6‐311G(dp) level of theory show that the solid‐state structure (C1 symmetry) is 79.33 kJ mol−1 higher in energy than the lowest energy gas‐phase structure (C2 symmetry). Natural bond orbital (NBO) analysis offers an explanation for the formation of the C—H…O interactions in electrostatic terms, but the stabilizing effect is insufficient to support the dimer in the gas phase.  相似文献   

15.
The prion proteins may play a critical role in copper homeostasis and the antioxidant activity in the brain. This review presents the state of art in the studies on Cu2+ prion systems. The proteins discussed are from different species from mammals to fishes. All proteins are His-rich and the research discussed clearly indicates the basic role of imidazole side chains and the adjacent amide nitrogen atoms in metal ion binding. Prions represent the family of proteins with new mode of Cu2+ binding which includes the amide nitrogen coordination. The multi-imidazole coordination is also likely and it can play a critical role in the antioxidant activity of the copper–prion complexes. The combination of the imidazole and amide nitrogen atoms to Cu2+ ions could also be relevant in histidine-rich peptide antibiotics including demegen. The impact of peptide sequence and His positions on copper binding ability is also discussed.  相似文献   

16.
The title compounds, [Cu(CHO2)2(C10H8N2)]n, (I), and {[Cu(C10H4O5)(C12H12N2)(H2O)2]·2H2O}n, (II), are composed of one‐dimensional linear coordination polymers involving copper(II) ions and bidentate bipyridyl species. In (I), the polymeric chains are located on twofold rotation axes at (x, x, 0) and are arranged in layered zones centered at z = 0, , ½ and parallel to the ab plane of the tetragonal crystal. Weak coordination of the formate anions of one layer to the copper centers of neighboring layers imparts a three‐dimensional connectivity to this structure. In (II), the polymeric chains propagate parallel to the a axis of the crystal. Noncoordinated water molecules link the chains through O—H...O hydrogen bonding in directions perpendicular to c, imparting to the entire structure three‐dimensional connectivity. The metal ions adopt distorted octahedral and square‐based pyramidal environments in (I) and (II), respectively. This study indicates that, under the given conditions, extended coordination involves CuII centers associating with the bipyridyl ligands rather than with the competing benzofurandicarboxylate entities.  相似文献   

17.
Copper(ii), nickel(ii) and zinc(ii) complexes of the peptides Ac-HVVH-NH(2) and Ac-HAAHVVH-NH(2) have been studied by potentiometric, UV-vis, CD, EPR and NMR spectroscopic measurements. Both tetra and heptapeptides can form relatively stable macrochelates with copper(ii), nickel(ii) and zinc(ii) ions, in which the ligands are coordinated via the side-chain imidazole functions. Formation of the macrochelates slightly suppresses, but cannot prevent the copper(ii) and nickel(ii) ion promoted deprotonation and coordination of the amide functionalities. The overall stoichiometry of the major species is [MH(-3)L](-) with a 4N (= N(-),N(-),N(-),N(im)) coordination mode. In the case of Ac-HAAHVVH-NH(2), coordination isomers of this species can exist with a preference for copper(ii) or nickel(ii) binding at the internal histidyl residue. In the copper(ii)-Ac-HAAHVVH-NH(2) system, the presence of the two anchoring sites results in the formation of dinuclear complexes. The existence of these species requires the involvement of amide functions in metal binding. Both equilibrium and spectroscopic data support the fact that the copper(ii) ions of the dinuclear species are independent from each other providing a good chance for the formation of various mixed metal complexes. It was found that zinc(ii) is not able to significantly alter the copper(ii) binding of the heptapeptide, but it can occupy the uncoordinated histidyl sites. The formation of the copper(ii)-nickel(ii) mixed species was obtained in alkaline solutions and CD spectra suggest the statistical distribution of the two metal ions among the histidyl residues. The binding of HAAHVVH to palladium(ii) is exclusive below pH 8 and the mixed metal species of palladium(ii) and copper(ii) ions are formed only in slightly basic solutions.  相似文献   

18.
5‐[(Imidazol‐1‐yl)methyl]benzene‐1,3‐dicarboxylic acid (H2L) was synthesized and the dimethylformamide‐ and dimethylacetamide‐solvated structures of its adducts with CuII, namely catena‐poly[[copper(II)‐bis[μ‐3‐carboxy‐5‐[(imidazol‐1‐yl)methyl]benzoato]] dimethylformamide disolvate], {[Cu(C12H9N2O4)2]·2C3H7NO}n, (I), and catena‐poly[[copper(II)‐bis[μ‐3‐carboxy‐5‐[(imidazol‐1‐yl)methyl]benzoato]] dimethylacetamide disolvate], {[Cu(C12H9N2O4)2]·2C4H9NO}n, (II), the formation of which are associated with mono‐deprotonation of H2L. The two structures are isomorphous and isometric. They consist of one‐dimensional coordination polymers of the organic ligand with CuII in a 2:1 ratio, [Cu(μ‐HL)2]n, crystallizing as the dimethylformamide (DMF) or dimethylacetamide (DMA) disolvates. The CuII cations are characterized by a coordination number of six, being located on centres of crystallographic inversion. In the polymeric chains, each CuII cation is linked to four neighbouring HL ligands, and the organic ligand is coordinated via Cu—O and Cu—N bonds to two CuII cations. In the corresponding crystal structures of (I) and (II), the coordination chains, aligned parallel to the c axis, are further interlinked by strong hydrogen bonds between the noncoordinated carboxy groups in one array and the coordinated carboxylate groups of neighbouring chains. Molecules of DMF and DMA (disordered) are accommodated at the interface between adjacent polymeric assemblies. This report provides the first structural evidence for the formation of coordination polymers with H2Lvia multiple metal–ligand bonds through both carboxylate and imidazole groups.  相似文献   

19.
By the solvothermal reaction under acidic conditions of Cu(NO3)2·3H2O, Na2C2O4 and the N,N′‐ditopic organic coligands 1‐(pyridin‐4‐yl)piperazine (ppz) and 1,2‐bis(pyridin‐4‐yl)ethane (bpa), two novel anionic copper(II) coordination compounds were obtained, namely the one‐dimensional coordination polymer catena‐poly[4‐(pyridin‐1‐ium‐4‐yl)piperazin‐1‐ium [[(oxalato‐κ2O1,O2)copper(II)]‐μ‐oxalato‐κ3O1,O2:O1′]], {(C9H15N3)[Cu(C2O4)2)]}n or {(H2ppz)[Cu(C2O4)2]}n, (I), and the discrete ionic complex 4,4′‐(ethane‐1,2‐diyl)dipyridinium bis(oxalato‐κ2O1,O2)copper(II), (C12H14N2)[Cu(C2O4)2] or (H2bpa)[Cu(C2O4)2], (II). The products were characterized by single‐crystal X‐ray diffraction, elemental analysis, powder X‐ray diffraction, thermogravimetric analyses and UV and IR spectroscopic techniques. The [Cu(C2O4)2]2− units for (I) and (II) are stabilized by H2ppz2+ and H2bpa2+ cations, respectively, via charge‐assisted hydrogen bonds. Also, a study of the pH‐controlled synthesis of this system shows that (I) was obtained at pH values of 2–4. When using bpa, a two‐dimensional square‐grid network of [Cu(C2O4)(bpa)]n was obtained at a pH of 4. This indicates that the pH of the reaction also plays a key role in the structural assembly and coordination abilities of oxalate and N,N′‐ditopic coligands.  相似文献   

20.
Potentiometric and spectroscopic data have shown that octarepeat dimer and tetramer are much more effective ligands for Cu(II) ions than simple octapeptide. Thus, the whole N-terminal segment of prion protein due to cooperative effects, could be more effective in binding of Cu(II) than simple peptides containing a His residue. The gain of the Cu(II) binding by longer octarepeat peptides derives from the involvement of up to four imidazoles in the coordination of the first Cu(II) ion. This type of binding increases the order of the peptide structure, which allows successive metal ions for easier coordination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号