首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Three novel conjugated polymers with N‐arylpyrrole as the conjugated bridge were designed and synthesized, which emitted strong one‐ or two‐photon excitation fluorescence in dilute tetrahydrofuran (THF) solution with high quantum yields. The maximal two‐photon absorption (TPA) cross‐sections of the polymers, measured by the two‐photon‐induced fluorescence method using femtosecond laser pulses in THF, were 752, 1114, and 1869 GM, respectively, indicating that the insertion of electron‐donating or electron‐withdrawing moieties into the polymer backbone could benefit to the increase of the TPA cross‐section. Their large TPA cross‐sections, coupled with the relatively high emission quantum yields, made these conjugated polymers attractive for practical applications, especially two‐photon excited fluorescence. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

2.
Three two‐photon absorption (TPA) tribranched chromophores were successfully prepared, in which 1,3,5‐triazine is been as electron deficient core, 1,4‐phenylenedivinylene as conjugated bridge, 3,4‐ethylenedioxythiophene (EDOT) ( T1 ), N‐methylpyrrole ( T2 ) or triphenylamine ( T3 ) as electron‐donating end‐groups. Their photophysical properties were studied by absorption, one‐ and two‐photon fluorescence and TPA cross‐section determination. The nonlinear transmission (NLT) measurement in femtoseconds (fs) regime at 800 nm indicates that TPA cross‐section (2 values of T1 , T2 and T3 with extended Π‐conjugated bridge are much larger than the corresponding chromophore T4 with a short length bridge, and TPA cross‐section of T1 with end‐groups EDOT exhibits a remarkable enhancement compared with T2 and T3 having the same length Π‐system. The chromophores T1 , T2 and T3 show also remarkable up‐converted luminescence and optical limiting activity.  相似文献   

3.
Nanocarriers are employed to deliver photosensitizers for photodynamic therapy (PDT) through the enhanced penetration and retention effect, but disadvantages including the premature leakage and non‐selective release of photosensitizers still exist. Herein, we report a 1O2‐responsive block copolymer (POEGMA‐b‐P(MAA‐co‐VSPpaMA) to enhance PDT via the controllable release of photosensitizers. Once nanoparticles formed by the block copolymer have accumulated in a tumor and have been taken up by cancer cells, pyropheophorbide a (Ppa) could be controllably released by singlet oxygen (1O2) generated by light irradiation, enhancing the photosensitization. This was demonstrated by confocal laser scanning microscopy and in vivo fluorescence imaging. The 1O2‐responsiveness of POEGMA‐b‐P(MAA‐co‐VSPpaMA) block copolymer enabled the realization of self‐amplified photodynamic therapy by the regulation of Ppa release using NIR illumination. This may provide a new insight into the design of precise PDT.  相似文献   

4.
Efficient violet–blue‐emitting molecules are especially useful for applications in full‐color displays, solid‐state lighting, as well as in two‐photon absorption (TPA) excited frequency‐upconverted violet–blue lasing. However, the reported violet–blue‐emitting molecules generally possess small TPA cross sections. In this work, new 1,8‐diazapyrenes derivatives 3 with blue two‐photon‐excited fluorescence emission were concisely synthesized by the coupling reaction of readily available 1,4‐naphthoquinone O,O‐diacetyl dioxime ( 1 ) with internal alkynes 2 under the [{RhCl2Cp*}2]–Cu(OAc)2 (Cp*=pentamethylcyclopentadienyl ligand) bimetallic catalytic system. Elongation of the π‐conjugated length of 1,8‐diazapyrenes 3 led to the increase of TPA cross sections without the expense of a redshift of the emission wavelength, probably due to the rigid planar structure of chromophores. It is especially noteworthy that 2,3,6,7‐tetra(4‐bromophenyl)‐1,8‐diazapyrene ( 3c ) has a larger TPA cross section than those of other molecules reported so far. These experimental results are explained in terms of the effects of extension of the π‐conjugated system, intramolecular charge transfer, and reduced detuning energy.  相似文献   

5.
We report the synthesis, thermal, one‐ and two‐photon properties of poly(2,6‐bis(p‐dihexylaminostyryl)anthracene‐9,10‐diyl‐altN‐octylcarbazole‐3,6‐/2,7‐diyl) ( P1/P2 ). The as‐synthesized polymers exhibit number‐average molecular weights of 1.7 × 104 for P1 and 2.1 × 104 g/mol for P2 . They emit strong one‐ and two‐photon excitation fluorescence with the peak around 502 nm, and the fluorescence quantum yields around 0.76 in chloroform. In film state, P1 and P2 show different red‐shift emission with the peaks at 512 nm and 523 nm, respectively. The DSC measurement reveals that as‐synthesized polymers are all amorphous aggregates with the glass transition temperatures of 131 °C for P1 and 152 °C for P2 . The solution two‐photon absorption (TPA) properties of P1 and P2 in chloroform are measured by the two‐photon‐induced fluorescence method using femtosecond laser pulses (120 fs). The TPA cross sections (δ) are measured over the range of 700–900 nm. The maximal δ of P1 and P2 all appear at ~800 nm and are 1010 GM and 940 GM per repeating unit, respectively. This suggests that no notable interactions among structure units that impair their fluorescence and TPA properties, and the polymers with large δ can be obtained by using the high TPA‐active units as building blocks. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

6.
Three new donor–π–donor (D‐π‐D) tetrathienoacene (thieno[2′,3′:4,5]thieno[3,2‐b]thieno[2,3‐d]thiophene (TTA))‐cored chromophores, end‐functionalized with electron‐donating triphenylamine (TPA) groups, were developed and characterized for their two‐photon‐related properties by using both nano‐ and femtosecond laser pulses as the probing tools. TTA‐based chromophores exhibit stronger and more widely dispersed two‐photon absorption (2PA) than those of dithienothiophene (DTT)‐based congeners. As a consequence, the bithiophene‐conjugated TTA chromophore exhibits the highest maximum 2PA cross‐section value (up to 2500 GM) with good thermal stability, and thus, it is the best performing two‐photon chromophore among the studied model compounds. The bithiophene‐conjugated DTT analogue exhibits the second highest maximum two‐photon absorptivity of 1950 GM, which is nearly 7 times larger than that of previously reported DTT‐based chromophores.  相似文献   

7.
The synthesis, one‐ and two‐photon absorption (TPA) and emission properties of two novel 2,6‐anthracenevinylene‐based copolymers, poly[9,10‐bis(3,4‐bis(2‐ethylhexyloxy)phenyl)‐2,6‐anthracenevinylene‐alt‐N‐octyl‐3,6‐carbazolevinyl‐ene] ( P1 ) and poly[9,10‐bis(3,4‐bis(2‐ethylhexyloxy)phenyl)‐2,6‐anthracenevinyl‐ene‐alt‐N‐octyl‐2,7‐carbazolevinylene] ( P2 ) were reported. The as‐synthesized polymers have the number‐average molecular weights of 1.56 × 104 for P1 and 1.85 × 104 g mol?1 for P2 and are readily soluble in common organic solvents. They emit strong bluish‐green one‐ and two‐photon excitation fluorescence in dilute toluene solution (? P1 = 0.85, ? P2 = 0.78, λem( P1 ) = 491 nm, λem( P2 ) = 483 nm). The maximal TPA cross‐sections of P1 and P2 measured by the two‐photon‐induced fluorescence method using femtosecond laser pulses in toluene are 840 and 490 GM per repeating unit, respectively, which are obviously larger than that (210 GM) of poly[9,10‐bis‐(3,4‐bis(2‐ethylhexyloxy) phenyl)‐2,6‐anthracenevinylene], indicating that the poly(2,6‐anthracenevinylene) derivatives with large TPA cross‐sections can be obtained by inserting electron‐donating moieties into the polymer backbone. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 463–470, 2010  相似文献   

8.
本文理论上研究了两个系列的噻吩基卟啉衍生物,这种衍生物在可见光区具有大的双光子吸收截面。用密度泛函理论和ZINDO-SOS方法,计算了分子的几何构型、电子结构,单光子和双光子吸收性质。结果显示噻吩单元的数目影响分子的单光子和双光子吸收性质。具有两个或三个噻吩基团的噻吩基卟啉衍生物在较大范围内具有可用于实际应用中的双光子吸收响应,这一性质有利于这类分子在光限幅中的应用。插入乙炔基有利于扩大共轭范围,增加分子的双光子吸收截面。同时,乙炔基团的加入导致了单光子和双光子波长的红移。从高透明性和相对大的非线性光学响应考虑,噻吩基卟啉衍生物是一类有应用前景的双光子吸收材料。  相似文献   

9.
Developing organic chromophores with large two‐photon absorption (TPA) in both organic solvents and aqueous media is crucial owing to their applications in solid‐state photonic devices and biological imaging. Herein, a series of novel terpyridine‐based quadrupolar derivatives have been synthesized. The influences of electron‐donating group, type of conjugated bridge, as well as solvent polarity on the molecular TPA properties have been investigated in detail. In contrast to the case in organic solvents, bis(thienyl)‐benzothiadiazole as a rigid conjugated bridge will completely quench molecular two‐photon emission in aqueous media. However, the combination of alkylcarbazole as the donor and bis(styryl)benzene as a conjugation bridge can enlarge molecular TPA cross‐sections in both organic solvent and aqueous media. The reasonable two‐photon emission brightness for the organic nanoparticles of chromophores 3 – 5 in the aqueous media, prepared by the reprecipitation method, enables them to be used as probes for in vivo biological imaging.  相似文献   

10.
A p‐quinodimethane (p‐QDM)‐bridged porphyrin dimer 1 has been prepared for the first time. An unexpected Michael addition reaction took place when we attempted to synthesize compound 1 by reaction of the cross‐conjugated keto‐linked porphyrin dimers 8 a and 8 b with alkynyl/aryl Grignard reagents. Alternatively, compound 1 could be successfully prepared by intramolecular Friedel–Crafts alkylation of the diol‐linked porphyrin dimer 14 with concomitant oxidation in air. Compound 1 shows intense one‐photon absorption (OPA, λmax=955 nm, ε=45400 M ?1 cm?1) and a large two‐photon absorption (TPA) cross‐section (σ(2)max=2080 GM at 1800 nm) in the near‐infrared (NIR) region due to its extended π‐conjugation and quinoidal character. It also exhibits a short singlet excited‐state lifetime of 25 ps. The cyclic voltammogram of 1 displays multiple redox waves with a small electrochemical energy gap of 0.86 eV. The ground‐state geometry, electronic structure, and optical properties of 1 have been further studied by density functional theory (DFT) calculations and compared with those of the keto‐linked dimer 8 b . This research has revealed that incorporation of a p‐QDM unit into the porphyrin framework had a significant impact on its optical and electronic properties, leading to a novel NIR OPA and TPA chromophore.  相似文献   

11.
Currently, photosensitizers (PSs) that are microenvironment responsive and hypoxia active are scarcely available and urgently desired for antitumor photodynamic therapy (PDT). Presented herein is the design of a redox stimuli activatable metal‐free photosensitizer (aPS), also functioning as a pre‐photosensitizer as it is converted to a PS by the mutual presence of glutathione (GSH) and hydrogen peroxide (H2O2) with high specificity on a basis of domino reactions on the benzothiadiazole ring. Superior to traditional PSs, the activated aPS contributed to efficient generation of reactive oxygen species including singlet oxygen and superoxide ion through both type 1 and type 2 pathways, alleviating the aerobic requirement for PDT. Equipped with a triphenylphosphine ligand for mitochondria targeting, mito aPS showed excellent phototoxicity to tumor cells with low light fluence under both normoxic and hypoxic conditions, after activation by intracellular GSH and H2O2. The mito aPS was also compatible to near infrared PDT with two photon excitation (800 nm) for extensive bioapplications.  相似文献   

12.
Phthalocyanine photosensitizers are effective in anticancer photodynamic therapy (PDT) but suffer from limited solubility, limited cellular uptake and limited selectivity for cancer cells. To improve these characteristics, we synthesized isopropylidene‐protected and partially deprotected tetra β‐glycosylated zinc (II) phthalocyanines and compared their uptake and accumulation kinetics, subcellular localization, in vitro photocytotoxicity and reactive oxygen species generation with those of disulfonated aluminum phthalocyanine. In MCF‐7 cancer cells, one of the compounds, zinc phthalocyanine {4}, demonstrated 10‐fold higher uptake, 5‐fold greater PDT‐induced cellular reactive oxygen species concentration and 2‐fold greater phototoxicity than equimolar (9 μm ) disulfonated aluminum phthalocyanine. Thus, isopropylidene‐protected β‐glycosylation of phthalocyanines provides a simple method of improving the efficacy of PDT.  相似文献   

13.
A new two‐photon material, 3E,6E‐bis(2‐pyrid‐4′‐ylvinyl)dibenzothiophene (BPVDBT), has been firstly synthesized by an efficient Pd‐catalyzed Heck coupling route. The single‐ and two‐photon fluorescence, quantum yields, lifetimes, solvent effects of the chromophore were studied in detail and the compound exhibited solvent‐sensitivity. The fluorescence intensity (Iout) and input excitation intensity (Iin) can fit in well with the quadratic parabolas, which indicates that the up‐converted fluorescence was induced by the two‐photon absorption (TPA). TPA cross‐section of BPVDBT has been measured using the two‐photon‐induced fluorescence method, whose value is 14.24×10?50 cm4·s·photon?1·molecule?1 at 750 nm. The experimental results confirm that BPVDBT is a good two‐photon absorbing chromophore with an A‐π‐A type.  相似文献   

14.
Photodynamic therapy (PDT) is a promising cancer treatment approach. However, the photosensitizers (PS) used for PDT are often limited by their poor solubility and selectivity for tumors. The goal of this study is to improve water solubility and delivery of the photosensitizer 2‐[1‐hexyloxyethyl]‐2‐divinyl pyropheophorbide‐a (HPPH) to breast cancer cells. An N‐(2‐hydroxypropyl)methacrylamide (HPMA) copolymer–HPPH photosensitizer conjugate is synthesized with heat shock receptor glucose‐regulated protein 78 (GRP78), targeting to GRP78 receptors of MCF‐7 cells, which are upregulated under mild hyperthermia. It is found that the uptake of the GRP78 targeted pep‐HPMA‐HPPH copolymer conjugate in MCF‐7 cells is improved through heat induction. Under mild hyperthermia the targeted copolymers are more effective compared to free HPPH. These results show potential for the utility of mild hyperthermia and copolymer delivery vehicles to enhance the efficacy of photodynamic therapy.  相似文献   

15.
The synthesis of tris(2‐thenoyltrifluoroacetonate)lanthanide(III) complexes featuring a diethylaminostyryl‐2,2′‐bipyridine coligand was achieved for lanthanum; the near‐infrared (NIR) emitters neodymium, erbium, and ytterbium; and the transition‐metal yttrium. The photophysical properties were thoroughly studied, and it was demonstrated that the conjugated bipyridine ligand acts as a good antenna for the sensitization of the NIR emitters. The two‐photon absorption (TPA) properties of all five complexes were investigated by using both two‐photon excited fluorescence and the Z‐scan method. We demonstrate that the nature of the rare earth ion has almost no influence on the TPA properties centered on the conjugated bipyridyl ligand. Finally, we show that YbIII is sensitized by a two‐photon antenna effect, and that NdIII is mostly sensitized by a one‐photon process involving direct excitation of forbidden f–f transitions.  相似文献   

16.
A glucopyranose functionalized star‐shaped oligomer, N‐tris{4,4′,4′′‐[(1E)‐2‐(2‐{(E)‐2‐[4‐(benzo[d]thiazol‐2‐yl)phenyl]vinyl}‐9,9‐bis(6‐2‐amido‐2‐deoxy‐1‐thio‐β‐D ‐glucopyranose‐hexyl)‐9H‐fluoren‐7‐yl)vinyl]phenyl}phenylamine (TVFVBN‐S‐NH2), is synthesized for two‐photon fluorescence imaging. In water, TVFVBN‐S‐NH2 self‐assembles into nanoparticles with an average diameter of ~49 nm and shows a fluorescence quantum yield of 0.21. Two‐photon fluorescence measurements reveal that TVFVBN‐S‐NH2 has a two‐photon absorption cross‐section of ~1100 GM at 780 nm in water. The active amine group on the glucopyranose moiety allows further functionalization of TVFVBN‐S‐NH2 with folic acid to yield TVFVBN‐S‐NH2FA with similar optical and physical properties as those for TVFVBN‐S‐NH2. Cellular imaging studies reveal that TVFVBN‐S‐NH2FA has increased uptake by MCF‐7 cells relative to that for TVFVBN‐S‐NH2, due to specific interactions between folic acid and folate receptors on the MCF‐7 cell membrane. This study demonstrates the effectiveness of glycosylation as a molecular engineering strategy to yield water‐soluble materials with a large two‐photon absorption (TPA) cross‐section for targeted cancer‐cell imaging.  相似文献   

17.
The use of gold nanoparticles as radiosensitizers is an effective way to boost the killing efficacy of radiotherapy while drastically limiting the received dose and reducing the possible damage to normal tissues. Herein, we designed aggregation‐induced emission gold clustoluminogens (AIE‐Au) to achieve efficient low‐dose X‐ray‐induced photodynamic therapy (X‐PDT) with negligible side effects. The aggregates of glutathione‐protected gold clusters (GCs) assembled through a cationic polymer enhanced the X‐ray‐excited luminescence by 5.2‐fold. Under low‐dose X‐ray irradiation, AIE‐Au strongly absorbed X‐rays and efficiently generated hydroxyl radicals, which enhanced the radiotherapy effect. Additionally, X‐ray‐induced luminescence excited the conjugated photosensitizers, resulting in a PDT effect. The in vitro and in vivo experiments demonstrated that AIE‐Au effectively triggered the generation of reactive oxygen species with an order‐of‐magnitude reduction in the X‐ray dose, enabling highly effective cancer treatment.  相似文献   

18.
Two series of related donor–acceptor conjugated dipolar, pseudo‐quadrupolar (V‐shaped) and octupolar molecular systems based on the p‐dimesitylborylphenylethynylaniline core, namely, 4‐(4‐dimesitylborylphenylethynyl)‐N,N‐dimethylaniline, 4‐[4‐(4‐dimesitylborylphenylethynyl)phenylethynyl]‐N,N‐dimethylaniline, 3,6‐bis(4‐dimesitylborylphenylethynyl)‐Nn‐butylcarbazole and tris[4‐(4‐dimesitylborylphenylethynyl)phenyl]amine, and on the E‐p‐dimesitylborylethenylaniline motif, namely, E‐4‐dimesitylborylethenyl‐N,N‐di(4‐tolyl)aniline, 3,6‐bis(E‐dimesitylborylethenyl)‐Nn‐butylcarbazole and tris(E‐4‐dimesitylborylethenylphenyl)amine have been synthesised by palladium‐catalyzed cross‐coupling and hydroboration routes, respectively. Their absorption and emission maxima, fluorescence lifetimes and quantum yields have been obtained and their two‐photon absorption (TPA) spectra and TPA cross‐sections have been examined. Of these systems, the octupolar compound tris(E‐4‐dimesitylborylethenylphenyl)amine has been shown to exhibit the largest TPA cross‐section among the two series of approximately 1000 GM at 740 nm. Its TPA performance is comparable to those of other triphenylamine‐based octupoles of similar size. The combination of such large TPA cross‐sections and high emission quantum yields, up to 0.94, make these systems attractive for applications involving two‐photon excited fluorescence (TPEF).  相似文献   

19.
A series of rod‐shaped and related three‐branched push–pull derivatives containing phosphane oxide or phosphane sulfide (PO or PS)—as an electron‐withdrawing group conjugated to electron‐donating groups, such as amino or ether groups, with a conjugated rod consisting of arylene–vinylene or arylene–ethynylene building blocks—were prepared. These compounds were efficiently synthesized by a Grignard reaction followed by Sonogashira coupling. Their photophysical properties including absorption, emission, time‐resolved fluorescence, and two‐photon absorption (TPA) were investigated with special attention to structure–property relationships. These fluorophores show high fluorescence quantum yields and solvent‐dependent experiments reveal that efficient intramolecular charge transfer occurs upon excitation, thereby leading to highly polar excited states, the polarity of which can be significantly enhanced by playing on the end groups and conjugated linker. Rod‐shaped and related three‐branched systems show similar fluorescence properties in agreement with excitation localization on one of the push–pull branches. By using stronger electron donors or replacing the arylene–ethynylene linkers with an arylene–vinylene one induces significant redshifts of both the low‐energy one‐photon absorption and TPA bands. Interestingly, a major enhancement in TPA responses is observed, whereas OPA intensities are only weakly affected. Similarly, phosphane oxide derivatives show similar OPA responses than the corresponding sulfides but their TPA responses are significantly larger. Finally, the electronic coupling between dipolar branches promoted by common PO or PS acceptor moieties induces either slight enhancement of the TPA responses or broadening of the TPA band in the near infrared (NIR) region. Such behavior markedly contrasts with triphenylamine‐core‐mediated coupling, which gives evidence for the different types of interactions between branches.  相似文献   

20.
Photodynamic therapy (PDT) shows unique selectivity and irreversible destruction toward treated tissues or cells, but still has several problems in clinical practice. One is limited therapeutic efficiency, which is attributed to hypoxia in tumor sites. Another is the limited treatment depth because traditional photosensitizes are excited by short wavelength light (<700 nm). An assembled nano‐complex system composed of oxygen donor, two‐photon absorption (TPA) species, and photosensitizer (PS) was synthesized to address both problems. The photosensitizer is excited indirectly by two‐photon laser through intraparticle FRET mechanism for improving treatment depth. The oxygen donor, hemoglobin, can supply extra oxygen into tumor location through targeting effect for enhanced PDT efficiency. The mechanism and PDT effect were verified through both in vitro and in vivo experiments. The simple system is promising to promote two‐photon PDT for clinical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号