共查询到20条相似文献,搜索用时 11 毫秒
1.
Constance Magne Dr. Sophie Cassaignon Gilles Lancel Dr. Thierry Pauporté 《Chemphyschem》2011,12(13):2461-2467
Brookite TiO2 nanoparticles have been synthesized at low temperature by a soft solution growth method and have been used as building blocks to prepare pure brookite nanoparticle porous films. The film brookite structure was confirmed by XRD and Raman spectroscopy. By spectrophotometry, it was shown that the films had a direct band gap of 3.4 eV. After sensitization by the N719 dye, efficient cells have been produced. A best overall conversion efficiency of 5.97 %, without a scattering layer, was found for the larger TiO2 starting nanoparticles. The cell open‐circuit voltage was improved compared with that of anatase cells and a lower electron diffusion coefficient was found in the photoanodes made of smaller brookite particles. Lanthanum‐doped brookite nanoparticle films were also studied. They showed a marked decreased in the amount of dye loading, and hence, the solar cells had a reduced current density that was not compensated for by the increased open‐circuit voltage of the cells. 相似文献
2.
Poly(N‐vinylpyrrolidone)‐Decorated Reduced Graphene Oxide with ZnO Grown In Situ as a Cathode Buffer Layer for Polymer Solar Cells 下载免费PDF全文
Ting Hu Lie Chen Kai Yuan Yiwang Chen 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(51):17178-17184
A ZnO@reduced graphene oxide–poly(N‐vinylpyrrolidone) (ZnO@RGO‐PVP) nanocomposite, prepared by in situ growth of ZnO nanoparticles on PVP‐decorated RGO (RGO‐PVP) was developed as a cathode buffer layer for improving the performance of polymer solar cells (PSCs). PVP not only favors homogeneous distribution of the RGO through the strong π–π interactions between graphene and PVP molecules, but also acts as a stabilizer and bridge to control the in situ growth of sol–gel‐derived ZnO nanoparticles on the surface of the graphene. At the same time, RGO provides a conductive connection for independent dispersion of ZnO nanoparticles to form uniform nanoclusters with fewer domain boundaries and surface traps. Moreover, the LUMO level of ZnO is effectively improved by modification with RGO‐PVP. Compared to bare ZnO, a ZnO@RGO‐PVP cathode buffer layer substantially reduces the recombination of carriers, increases the electrical conductivity, and enhances electron extraction. Consequently, the power conversion efficiency of an inverted device based on thieno[3,4‐b]thiophene/benzodithiophene (PTB7):[6,6]‐phenyl C71‐butyric acid methyl ester (PC71BM) with ZnO@RGO‐PVP as cathode buffer layer was greatly improved to 7.5 % with improved long‐term stability. The results reveal that ZnO@RGO‐PVP is universally applicable as a cathode buffer layer for improving the performance of PSCs. 相似文献
3.
Feng Zhu Panpan Zhang Dr. Xuejun Wu Prof. Limin Fu Prof. Jianping Zhang Prof. Dongsheng Xu 《Chemphyschem》2012,13(16):3731-3737
Zn‐doped anatase TiO2 nanoparticles are synthesized by a one‐step hydrothermal method. Detailed electrochemical measurements are undertaken to investigate the origin of the effect of Zn doping on the performance of dye‐sensitized solar cells (DSSCs). It is found that incorporation of Zn2+ into an anatase lattice elevates the edge of the conduction band (CB) of the photoanodes and the Fermi level is shifted toward the CB edge, which contributes to the improvement in open‐circuit voltage (VOC). Charge‐density plots across the cell voltage further confirm the increase in the CB edge in DSSCs directly. Photocurrent and transient photovoltage measurements are employed to study transport and recombination dynamics. The electron recombination is accelerated at higher voltages close to the CB edge, thus leading to a negative effect on the VOC. 相似文献
4.
Lirong Zhang Minh‐Ngoc Ha Guanghui Sun Yuehui Fan Guanlin Zhang Yuhong Wang Guanzhong Lu 《中国化学会会志》2013,60(11):1371-1379
In this work, high‐performance dye‐sensitized solar cells (DSSCs) based on new low‐cost visible nickel complex dye (VisDye), TiO2 nanoparticle/nanotube composites electrodes, carbon nanoparticles counter electrodes, and ionic liquids electrolytes have been fabricated. The electronic structure, optical spectroscopy, and electrochemical properties of the VisDye were studied. Experimental results indicate that it is beneficial to improve the electron transport and power conversion efficiency using the nickel complex VisDye and TiO2 nanoparticle/nanotube composites. Under optimized conditions, the solar energy conversion efficiencies were measured. The short‐circuit current density (JSC), the open‐circuit voltage (VOC), the fill factor (FF), and the overall efficiency (η) of the DSSCs are 10.01 mA/cm2, 516 mV, 0.68, and 3.52%, respectively. This study demonstrates that the combination of new VisDye with TiO2 nanoparticle/nanotube composites electrodes and carbon nanoparticles counter electrodes provide a way to fabricate highly efficient dye‐sensitized solar cells in low‐cost production. 相似文献
5.
Wei Zhang Zhen Fang Mingjuan Su Mark Saeys Bin Liu 《Macromolecular rapid communications》2009,30(18):1533-1537
A conjugated polymer containing an electron donating backbone (triphenylamine) and an electron accepting side chain (cyanoacetic acid) with conjugated thiophene units as the linkers has been synthesized. Dye‐sensitized solar cells (DSSCs) are fabricated utilizing this material as the dye sensitizer, resulting a typical power conversion efficiency of 3.39% under AM 1.5 G illumination, which represents the highest efficiency for polymer dye‐sensitized DSSCs reported so far. The results show the good promise of conjugated polymers as sensitizers for DSSC applications.
6.
Ming Liu Pu Fan Qin Hu Thomas P. Russell Yao Liu 《Angewandte Chemie (International ed. in English)》2020,59(41):18131-18135
Self‐doping ionene polymers were efficiently synthesized by reacting functional naphthalene diimide (NDI) with 1,3‐dibromopropane ( NDI‐NI ) or trans‐1,4‐dibromo‐2‐butene ( NDI‐CI ) via quaternization polymerization. These NDI‐based ionene polymers are universal interlayers with random molecular orientation, boosting the efficiencies of fullerene‐based, non‐fullerene‐based, and ternary organic solar cells (OSCs) over a wide range of interlayer thicknesses, with a maximum efficiency of 16.9 %. NDI‐NI showed a higher interfacial dipole (Δ), conductivity, and electron mobility than NDI‐CI , affording solar cells with higher efficiencies. These polymers proved to efficiently lower the work function (WF) of air‐stable metals and optimize the contact between metal electrode and organic semiconductor, highlighting their power to overcome energy barriers of electron injection and extraction processes for efficient organic electronics. 相似文献
7.
Carboxyl Group (CO2H) Functionalized Coordination Polymer Nanoparticles as Efficient Platforms for Drug Delivery 下载免费PDF全文
Dr. Fernando Novio Dr. Julia Lorenzo Dr. Fabiana Nador Karolina Wnuk Dr. Daniel Ruiz‐Molina 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(47):15443-15450
Functionalization of nanoparticles can significantly influence their properties and potential applications. Although researchers can now functionalize metal, metal oxide, and organic polymer nanoparticles with a high degree of precision, controlled surface functionalization of nanoscale coordination polymer particles (CPPs) has remained a significant challenge. The lack of methodology is perhaps one of the greatest roadblocks to the advancement of CPPs into high added‐value drug delivery applications. Here, we report having achieved this goal through a stepwise formation and functionalization protocol. We fabricated robust nanoparticles with enhanced thermal and colloidal stabilities by incorporation of carboxyl groups and these surface carboxyl groups could be subsequently functionalized through well‐known peptide coupling reactions. The set of chemistries that we employed as proof‐of‐concept enabled a plethora of new functional improvements for the application of CPPs as drug delivery carriers, including enhanced colloidal stabilities and the incorporation of additional functional groups such as polyethylene glycol (PEG) or fluorescent dyes that enabled tracking of their cellular uptake. Finally, we ascertained the cytotoxicity of the new CPP nanoparticles loaded with camptothecin to human breast adenocarcinoma (MCF‐7). Efflux measurements show that the encapsulation of camptothecin enhances the potency of the drug 6.5‐fold and increases the drug retention within the cell. 相似文献
8.
Hedi Wei Yi‐Hsiang Chao Chong Kang Cuihong Li Heng Lu Xue Gong Huanli Dong Wenping Hu Chain‐Shu Hsu Zhishan Bo 《Macromolecular rapid communications》2015,36(1):84-89
High‐molecular‐weight conjugated polymer HD‐PDFC‐DTBT with N‐(2‐hexyldecyl)‐3,6‐difluorocarbazole as the donor unit, 5,6‐bis(octyloxy)benzothiadiazole as the acceptor unit, and thiophene as the spacer is synthesized by Suzuki polycondensation. HD‐PDFC‐DTBT shows a large bandgap of 1.96 eV and a high hole mobility of 0.16 cm2 V−1 s−1. HD‐PDFC‐DTBT:PC71BM‐based inverted polymer solar cells (PSCs) give a power conversion efficiency (PCE) of 7.39% with a Voc of 0.93 V, a Jsc of 14.11 mA cm−2, and an FF of 0.56.
9.
Ultrathin g‐C3N4 Nanosheets Coupled with AgIO3 as Highly Efficient Heterostructured Photocatalysts for Enhanced Visible‐Light Photocatalytic Activity 下载免费PDF全文
Yunfeng Li Kai Li Yang Yang Leijiao Li Prof. Yan Xing Dr. Shuyan Song Prof. Rongchao Jin Prof. Mei Li 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(49):17739-17747
The photocatalytic activity of graphite‐like carbon nitride (g‐C3N4) could be enhanced by heterojunction strategies through increasing the charge‐separation efficiency. As a surface‐based process, the heterogeneous photocatalytic process would become more efficient if a larger contact region existed in the heterojunction interface. In this work, ultrathin g‐C3N4 nanosheets (g‐C3N4‐NS) with much larger specific surface areas are employed instead of bulk g‐C3N4 (g‐C3N4‐B) to prepare AgIO3/g‐C3N4‐NS nanocomposite photocatalysts. By taking advantage of this feature, the as‐prepared composites exhibit remarkable performances for photocatalytic wastewater treatment under visible‐light irradiation. Notably, the optimum photocatalytic activity of AgIO3/g‐C3N4‐NS composites is almost 80.59 and 55.09 times higher than that of pure g‐C3N4‐B towards the degradation of rhodamine B and methyl orange pollutants, respectively. Finally, the stability and possible photocatalytic mechanism of the AgIO3/g‐C3N4‐NS system are also investigated. 相似文献
10.
11.
Dr. David Cantillo Dr. Carlos Mateos Dr. Juan A. Rincon Dr. Oscar de Frutos Prof. Dr. C. Oliver Kappe 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(37):12894-12898
Diazo anhydrides (Ar?N?N?O?N?N?Ar) have been known since 1896 but have rarely been used in synthesis. This communication describes the development of a photochemical catalyst‐free C?H arylation methodology for the preparation of bi(hetero)aryls by the one‐pot reaction of anilines with tert‐butyl nitrite and (hetero)arenes under neutral conditions. The key step in this procedure is the in situ formation and subsequent photochemical (>300 nm) homolytic cleavage of a transient diazo anhydride intermediate. The generated aryl radical then efficiently reacts with a (hetero)arene to form the desired bi(hetero)aryls producing only nitrogen, water, and tert‐butanol as byproducts. The scope of the reaction for several substituted anilines and (hetero)arenes was investigated. A continuous‐flow protocol increasing selectivity and safety has been developed enabling the experimentally straightforward preparation of a variety of substituted bi(hetero)aryls within 45 min of reaction time. 相似文献
12.
Dye‐Incorporated Polynaphthalenediimide Acceptor for Additive‐Free High‐Performance All‐Polymer Solar Cells 下载免费PDF全文
Dong Chen Jia Yao Lie Chen Jingping Yin Ruizhi Lv Bin Huang Siqi Liu Zhi‐Guo Zhang Chunhe Yang Yiwang Chen Yongfang Li 《Angewandte Chemie (International ed. in English)》2018,57(17):4580-4584
All‐polymer solar cells (all‐PSCs) can offer unique advantages for applications in flexible devices, and naphthalene diimide (NDI)‐based polymer acceptors are the widely used polymer acceptors. However, their power conversion efficiency (PCE) still lags behind that of state‐of‐the‐art polymer solar cells, due to low light absorption, suboptimal energy levels and the strong aggregation of the NDI‐based polymer acceptor. Herein, a rhodanine‐based dye molecule was introduced into the NDI‐based polymer acceptor by simple random copolymerization and showed an improved light absorption coefficient, an up‐shifted lowest unoccupied molecular orbital level and reduced crystallization. Consequently, additive‐free all‐PSCs demonstrated a high PCE of 8.13 %, which is one of the highest performance characteristics reported for all‐PSCs to date. These results indicate that incorporating a dye into the n‐type polymer gives insight into the precise design of high‐performance polymer acceptors for all‐PSCs. 相似文献
13.
Efficient Blue‐Colored Solid‐State Dye‐Sensitized Solar Cells: Enhanced Charge Collection by Using an in Situ Photoelectrochemically Generated Conducting Polymer Hole Conductor 下载免费PDF全文
Jinbao Zhang Dr. Nick Vlachopoulos Dr. Yan Hao Dr. Thomas W. Holcombe Prof. Gerrit Boschloo Dr. Erik M. J. Johansson Prof. Michael Grätzel Prof. Anders Hagfeldt 《Chemphyschem》2016,17(10):1441-1445
A high power conversion efficiency (PCE) of 5.5 % was achieved by efficiently incorporating a diketopyrrolopyrrole‐based dye with a conducting polymer poly(3,4‐ethylenediothiophene) (PEDOT) hole‐transporting material (HTM) that was formed in situ, compared with a PCE of 2.9 % for small molecular spiro‐OMeTAD‐based solid‐state dye solar cells (sDSCs). The high PCE for PEDOT‐based sDSCs is mainly attributed to the significantly enhanced charge‐collection efficiency, as a result of the three‐order‐of‐magnitude higher hole conductivity (0.53 S cm?1) compared with that of the widely used low molecular weight HTM spiro‐OMeTAD (3.5×10?4 S cm?1). 相似文献
14.
Structural Control of Hierarchically‐Ordered TiO2 Films by Water for Dye‐Sensitized Solar Cells 下载免费PDF全文
Sung Hoon Ahn Dong Jun Kim Dr. Dong Kyu Roh Won Seok Chi Prof. Jong Hak Kim 《Chemphyschem》2014,15(9):1841-1848
A facile way of controlling the structure of TiO2 by changing the amount of water to improve the efficiency of dye‐sensitized solar cells (DSSCs) is reported. Hierarchically ordered TiO2 films with high porosity and good interconnectivity are synthesized in a well‐defined morphological confinement arising from a one‐step self‐assembly of preformed TiO2 (pre‐TiO2) nanocrystals and a graft copolymer, namely poly(vinyl chloride)‐g‐poly(oxyethylene methacrylate). The polymer–solvent interactions in solution, which are tuned by the amount of water, are shown to be a decisive factor in determining TiO2 morphology and device performance. Systematic control of wall and pore size is achieved and enables the bifunctionality of excellent light scattering properties and easy electron transport through the film. These properties are characterized by reflectance spectroscopy, incident photon‐to‐electron conversion efficiency, and electrochemical impedance spectroscopy analyses. The TiO2 photoanode that is prepared with a higher water ratio, [pre‐TiO2]:[H2O]=1:0.3, shows a larger surface area, greater light scattering, and better electron transport, which result in a high efficiency (7.7 %) DSSC with a solid polymerized ionic liquid. This efficiency is much greater than that of commercially available TiO2 paste (4.0 %). 相似文献
15.
A New Class of Dendritic Metallogels with Multiple Stimuli‐Responsiveness and as Templates for the In Situ Synthesis of Silver Nanoparticles 下载免费PDF全文
Zhi‐Xiong Liu Dr. Yu Feng Dr. Zhi‐Yong Zhao Zhi‐Chao Yan Yan‐Mei He Xu‐Jun Luo Prof. Dr. Chen‐Yang Liu Prof. Dr. Qing‐Hua Fan 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(2):533-541
A new class of poly(aryl ether) dendritic ligands containing a pyridine functionality at the focal point and the corresponding AgI complexes through metal–ligand coordination were designed, synthesized, and fully characterized. Compared with the dendritic ligands, the corresponding dendritic complexes exhibited much better gelation ability for various organic solvents at very low critical gelation concentrations. The gel–sol phase transition temperatures and morphologies could be finely tuned by binding silver ion to the ligand. A preliminary study revealed that multiple noncovalent interactions, such as AgI–pyridine coordination, solvophobic interaction, and π–π stacking, synergistically enable the formation of stable metallogels. Interestingly, these metallogels could intelligently respond to multiple external stimuli including temperature, chemicals, and shear stress, leading to gel–sol phase transitions. In addition, these dendritic metallogels were successfully applied as templates for the in situ formation and stabilization of silver nanoparticles without the use of any chemical reducing/stabilizing agents. 相似文献
16.
B. Hari Babu Chengkun Lyu Hongwei Zhang Zhihao Chen Fenghong Li Lin Feng Xiao‐Tao Hao 《中国化学》2020,38(8):817-822
Interfacial engineering is expected to be a feasible strategy to improve the charge transport properties of the hole transport layer (HTL), which is of crucial importance to boost the device performance of organic solar cells (OSCs). In this study, two types of alcohol soluble materials, 2,3,5,6‐tetrafluoro‐7,7,8,8‐tetracyanoquinodimethane (F4‐TCNQ) and di‐tetrabutylammoniumcis–bis(isothiocyanato)bis (2,2’‐bipyridyl‐4,4’‐dicarboxylato) ruthenium(II) (N719) dye were selected as the dopant for HTL. The doping of F4‐TCNQ and N719 dye in poly (ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) with and without integrating a graphene quantum‐dots (G‐QDs) layer has been explored in poly[[2,6′‐4‐8‐di(5‐ethylhexylthienyl)benzo[1,2‐b:3,3‐b]dithiophene][3‐fluoro‐2[(2‐ethylhexyl)carbonyl]thieno[3,4‐b]thio‐phenediyl:(2,2′‐((2Z,2′Z)‐(((4,4,9, 9‐tetrakis(4‐hexylphenyl)‐4,9‐dihydro‐s‐indaceno[1,2‐b:5,6‐b′]dithiophene‐2,7‐diyl)bis(4‐((2‐ethylhexyl)oxy)thiophene‐5,2‐diyl))bis(methanylylidene))bis(5,6‐difluoro‐3‐oxo‐2,3‐dihydro‐1H‐indene‐2,1‐diylidene))dimalononitrile (PTB7‐Th:IEICO‐4F) OSCs. The power conversion efficiency of the non‐fullerene OSCs has been increased to 10.12% from 8.84%. The influence of HTL modification on the nano‐morphological structures and photophysical properties is analyzed based on the comparative studies performed on the control and modified devices. The use of chemical doping and bilayer strategy optimizes the energy level alignment, nanomorphology, hole mobility, and work‐function of HTL, leading to considerable reduction of the leakage current and recombination losses. Our work demonstrates that the doping of HTL and the incorporation of G‐QDs layer to constitute a bilayer HTL is an promising strategy to fabricate high performance non‐fullerene polymer solar cells 相似文献
17.
Polymer Acceptor Based on B←N Units with Enhanced Electron Mobility for Efficient All‐Polymer Solar Cells 下载免费PDF全文
Ruyan Zhao Dr. Chuandong Dou Prof. Zhiyuan Xie Prof. Jun Liu Prof. Lixiang Wang 《Angewandte Chemie (International ed. in English)》2016,55(17):5313-5317
We demonstrate that polymer electron acceptors with excellent all‐polymer solar‐cell (all‐PSC) device performance can be developed from polymer electron donors by using B←N units. By alleviating the steric hindrance effect of the bulky pendant moieties on the conjugated polymers that contain B←N units, the π–π stacking distance of polymer backbones is decreased and the electron mobility is consequently enhanced by nearly two orders of magnitude. As a result, the power conversion efficiency of all‐PSCs with the polymer acting as the electron acceptor is greatly improved from 0.12 % to 5.04 %. This PCE value is comparable to that of the best all‐PSCs with state‐of‐the‐art polymer acceptors. 相似文献
18.
Dark‐Field‐Based Observation of Single‐Nanoparticle Dynamics on a Supported Lipid Bilayer for In Situ Analysis of Interacting Molecules and Nanoparticles 下载免费PDF全文
Observation of single plasmonic nanoparticles in reconstituted biological systems allows us to obtain snapshots of dynamic processes between molecules and nanoparticles with unprecedented spatiotemporal resolution and single‐molecule/single‐particle‐level data acquisition. This Concept is intended to introduce nanoparticle‐tethered supported lipid bilayer platforms that allow for the dynamic confinement of nanoparticles on a two‐dimensional fluidic surface. The dark‐field‐based long‐term, stable, real‐time observation of freely diffusing plasmonic nanoparticles on a lipid bilayer enables one to extract a broad range of information about interparticle and molecular interactions throughout the entire reaction period. Herein, we highlight important developments in this context to provide ideas on how molecular interactions can be interpreted by monitoring dynamic behaviors and optical signals of laterally mobile nanoparticles. 相似文献
19.
Guang Zhu Prof. Dr. Likun Pan Hengchao Sun Xinjuan Liu Tian Lv Ting Lu Jie Yang Prof. Dr. Zhuo Sun 《Chemphyschem》2012,13(3):769-773
A reduced graphene (RG)‐Au nanoparticle composite film is successfully fabricated by electrophoretic deposition and used as counter electrode for quantum dot‐sensitized solar cells. The RG‐Au composite is prepared by one‐step microwave‐assisted reduction of chloroaurate in alkaline solution with graphite oxide dispersion. Under one sun illumination (AM 1.5 G, 100 mW cm?2), the cell with a RG‐Au counter electrode shows an energy conversion efficiency of 1.36 %, which is higher than those of cells employing conventional Pt or Au counter electrodes, due to the superior combination of highly catalytic Au nanoparticles and the conductive graphene network structure. 相似文献