首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The catalytic mechanism of nitrate reduction by periplasmic nitrate reductases has been investigated using theoretical and computational means. We have found that the nitrate molecule binds to the active site with the Mo ion in the +6 oxidation state. Electron transfer to the active site occurs only in the proton‐electron transfer stage, where the MoV species plays an important role in catalysis. The presence of the sulfur atom in the molybdenum coordination sphere creates a pseudo‐dithiolene ligand that protects it from any direct attack from the solvent. Upon the nitrate binding there is a conformational rearrangement of this ring that allows the direct contact of the nitrate with MoVI ion. This rearrangement is stabilized by the conserved methionines Met141 and Met308. The reduction of nitrate into nitrite occurs in the second step of the mechanism where the two dimethyl‐dithiolene ligands have a key role in spreading the excess of negative charge near the Mo atom to make it available for the chemical reaction. The reaction involves the oxidation of the sulfur atoms and not of the molybdenum as previously suggested. The mechanism involves a molybdenum and sulfur‐based redox chemistry instead of the currently accepted redox chemistry based only on the Mo ion. The second part of the mechanism involves two protonation steps that are promoted by the presence of MoV species. MoVI intermediates might also be present in this stage depending on the availability of protons and electrons. Once the water molecule is generated only the MoVI species allow water molecule dissociation, and, the concomitant enzymatic turnover. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2009  相似文献   

2.
Nitrate is a pervasive aquatic contaminant of global environmental concern. In nature, the most effective nitrate reduction reaction (NRR) is catalyzed by nitrate reductase enzymes at neutral pH, using a highly‐conserved Mo center ligated mainly by oxo and thiolate groups. Mo‐based NRR catalysts mostly function in organic solvents with a low water stability. Recently, an oxo‐containing molybdenum sulfide nanoparticle that serves as an NRR catalyst at neutral pH was first reported. Herein, in a nanoparticle‐catalyzed NRR system a pentavalent MoV(=O)S4 species, an enzyme mimetic, served as an active intermediate for the NRR. Potentiometric titration analysis revealed that a redox synergy among MoV?S, S radicals, and MoV(=O)S4 likely play a key role in stabilizing MoV(=O)S4, showing the importance of secondary interactions in facilitating NRR. The first identification and characterization of an oxo‐ and thiolate‐ligated Mo intermediates pave the way to the molecular design of efficient enzyme mimetic NRR catalysts in aqueous solution.  相似文献   

3.
The asymmetric molybdenum(VI) dioxo complexes of the bis(phenolate) ligands 1,4‐bis(2‐hydroxybenzyl)‐1,4‐diazepane, 1,4‐bis(2‐hydroxy‐4‐methylbenzyl)‐1,4‐diazepane, 1,4‐bis(2‐hydroxy‐3,5‐dimethylbenzyl)‐1,4‐diazepane, 1,4‐bis(2‐hydroxy‐3,5‐di‐tert‐butylbenzyl)‐1,4‐diazepane, 1,4‐bis(2‐hydroxy‐4‐flurobenzyl)‐1,4‐diazepane, and 1,4‐bis(2‐hydroxy‐4‐chlorobenzyl)‐1,4‐diazepane (H2(L1)–H2(L6), respectively) have been isolated and studied as functional models for molybdenum oxotransferase enzymes. These complexes have been characterized as asymmetric complexes of type [MoO2(L)] 1–6 by using NMR spectroscopy, mass spectrometry, elemental analysis, and electrochemical methods. The molecular structures of [MoO2(L)] 1–4 have been successfully determined by single‐crystal X‐ray diffraction analyses, which show them to exhibit a distorted octahedral coordination geometry around molybdenum(VI) in an asymmetrical cis‐β configuration. The Mo? Ooxo bond lengths differ only by ≈0.01 Å. Complexes 1 , 2 , 5 , and 6 exhibit two successive MoVI/MoV (E1/2, ?1.141 to ?1.848 V) and MoV/MoIV (E1/2, ?1.531 to ?2.114 V) redox processes. However, only the MoVI/MoV redox couple was observed for 3 and 4 , suggesting that the subsequent reduction of the molybdenum(V) species is difficult. Complexes 1 , 2 , 5 , and 6 elicit efficient catalytic oxygen‐atom transfer (OAT) from dimethylsulfoxide (DMSO) to PMe3 at 65 °C at a significantly faster rate than the symmetric molybdenum(VI) complexes of the analogous linear bis(phenolate) ligands known so far to exhibit OAT reactions at a higher temperature (130 °C). However, complexes 3 and 4 fail to perform the OAT reaction from DMSO to PMe3 at 65 °C. DFT/B3LYP calculations on the OAT mechanism reveal a strong trans effect.  相似文献   

4.
The novel dioxomolybdenum(VI) complexes with methyl ( 1 ), ethyl ( 2 ), n‐propyl ( 3 ), i‐propyl ( 4 ), n‐butyl ( 5 ) and cyclohexyl ( 6 ) ester of 2‐mercaptonicotinic acid have been prepared in the reactions of MoO2Cl2 and MoO2(acac)2 (acac = 2,4‐pentandionate) with mercaptonicotinic acid in corresponding alcohol. The esterification reaction was catalyzed by MoV originated from the reduction of MoVI with mercaptonicotinic ‐SH group with simultaneous formation of S–S bond resulting from the condensation of two 2‐mercaptonicotinic molecules. The presence of MoV was proved by ESR spectra. The molecular and crystal structures of 1 , 2 , 3 and 4 as well as of the by‐products 1,1′‐dithio‐2,2′‐n‐butylnicotinoate ( 7 ) and tetramethylammonium hexachloromolybdate(V) ( 8 ) have been determined by a X‐ray single crystal diffraction. The complexes 1 – 4 contain MoO22+ core with octahedral coordination of each molybdenum atom complexed by two 2‐mercaptonicotinato N and S donor atoms.  相似文献   

5.
Deoxydehydration (DODH) is one of the most promising tools to reduce the oxygen content of biomass (sugars and polyols) and provide analogues of platform chemicals that are derived from fossil resources. This reaction converts a vicinal diol into an alkene and is typically catalyzed by high‐oxidation‐state metal‐oxo compounds in the presence of a stoichiometric reductant, with examples of both homogeneous and heterogeneous systems. This minireview will highlight the developments in this field over the past 5 years and focus on efforts to solve the problems that currently prevent DODH being performed on a commercial scale, including the nature of the reductant, substrate scope and selectivity, and catalyst recovery and expense.  相似文献   

6.
The heterogeneous reduction of nitrobenzene by thiophenol catalyzed by the dianionic bis(2‐sulfanyl‐2,2‐diphenylethanoxycarbonyl) dioxomolybdate(VI) complex, [MoVIO2(O2CC(S)(C6H5)2)2]2−, intercalated into a Zn(II)–Al(III) layered double hydroxide host [Zn3−xAlx(OH)6]x+, has been investigated under anaerobic conditions. Aniline was found to be the only product formed through a reaction consuming six moles of thiophenol for each mol of aniline produced. The kinetics of the system have been analyzed in detail. In excess of thiophenol, all reactions follow first‐order kinetics (ln([PhNO2]/[PhNO2]0) = −kappt) with the apparent rate constant kapp being a complex function of both initial nitrobenzene and thiophenol concentrations, as well as linearly dependent on the amount of solid catalyst used. A mechanism for this catalytic reaction consistent with the kinetic experiments as well as the observed properties of the intercalated molybdenum complex has thiophenol inducing the initial coupled proton–electron transfer steps to form an intercalated MoIV species, which is oxidized back to the parent MoVI complex by nitrobenzene via a two‐electron oxygen atom transfer reaction that yields nitrosobenzene. This mechanism is widespread in enzymatic catalysis and in model chemical reactions. The intermediate nitrosobenzene thus formed is reduced directly by excess thiophenol to aniline. The values of rate coefficients indicate that reduction of nitrobenzene proceeds much faster than proton‐assisted oxidation of thiophenol. This may account for the observation that the presence of protonic amberlite IR‐120(H) increases considerably the rate of the overall reaction catalyzed. Activation parameters in excess of the protonic resin and PhSH were ΔH = 80 kJ mol−1 and ΔS = −70 J mol−1 K−1. The large negative activation entropy is consistent with an associative transition state. The present system is characterized by a well‐defined catalytic cycle with multiple‐turnovers reductions of nitrobenzene to aniline without appreciable deactivation. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 212–224, 2001  相似文献   

7.
The reaction mechanism of 1,2×n‐deoxydehydration (DODH; n=1, 2, 3 …) reactions with 1‐butanol as a reductant in the presence of methyltrioxorhenium(VII) catalyst has been investigated by DFT. The reduced rhenium compound, methyloxodihydroxyrhenium(V), serves as the catalytically relevant species in both allylic alcohol isomerization and subsequent DODH processes. Compared with three‐step pathway A, involving [1,3]‐transposition of allylic alcohols, direct two‐step pathway B is an alternative option with lower activation barriers. The rate‐limiting step of the DODH reaction is the first hydrogen transfer in methyltrioxorhenium(VII) reduction. Moreover, the increase in the distance between two hydroxyl groups in direct 1,2×n‐DODH reactions for C4 and C6 diols results in a higher barrier height.  相似文献   

8.
The preparation of MoVI oxinate and a purported MoV oxine complex is described. The latter was analysed, and a number of its properties, including separation from the MoVI compound by paper chromatography, were studied.The preparation of a solution containing trivalent molybdenum and the separation of this valency from the pentavalent state by chromatography upon cellulose is also described.Suggestions as to the stability of thiocyanate and oxine compounds of MoIII were made from the results of some extraction experiments performed upon trivalXnt molybdenum solutions.  相似文献   

9.
Volumetric H2-uptake measurements on an Mo2N (79 m2g–1) sample reduced at 673 K have been carried out and the uptake isotherms in the temperature range of 308–623 K have been determined. Both the total and reversible hydrogen uptake increased with the uptake temperature. The irreversible hydrogen uptake increased abruptly when the uptake temperature was raised up to 423 K. The maximum of irreversible hydrogen uptake was measured at 473 K. The HIR/Mo ratio calculated from the uptakes obtained in the temperature range of 308–623 K varies in the range of 0.0010–0.0202. One possible mechanism for hydrogen adsorption is proposed to be heterolytic dissociation on Mo-N paris, in which the molybdenum atoms are in unsaturated coordination.  相似文献   

10.
IntroductionMolybdenumiswidelyusedinbiologicalsystemsduetothetwobasicforms :nitrogenasesandoxotransferasesoroxomolybdoenzymes .Thelatterasthemononuclearactivesitesofamuchmorediversegroupofenzymesingeneralfunctioncatalyticallytransferanoxygenatomeithert…  相似文献   

11.
The crystal structures of molybdocene‐amino acid compounds of the type [Cp2MoIV(κN, κO‐AA)]+Cl·xH2O with AA = D ‐phenylalaninato (x = 1.5), DL ‐leucinato (x = 2) and DL ‐valinato (x = 1) have been determined (Cp = η5‐C5H5). The compounds feature an almost planar, five‐membered chelate ring of the aminocarboxylate moiety (deprotonated amino acid) with the molybdenum atom. In the phenylalaninato complex π‐stacking between the phenyl rings is found. The complexes were proven kinetically stable at pH < 1 for at least 24 h.  相似文献   

12.
Density functional theory (DFT) calculations have been employed to investigate hydrosilylation of carbonyl compounds catalyzed by three high-valent molybdenum (VI) hydrides: Mo(NAr)H(Cp)(PMe3) (1A), Mo(NAr)H(PMe3)3 (1B), and Mo(NAr)H (Tp)(PMe3) (Tp?=?tris(pyrazolyl) borate) (1C). Three independent mechanisms have been explored. The first mechanism is “carbonyl insertion pathway”, in which the carbonyls insert into Mo?H bond to give a metal alkoxide complex. The second mechanism is the “ionic hydrosilylation pathway”, in which the carbonyls nucleophilically attacks η1-silane molybdenum adduct. The third mechanism is [2 + 2] addition mechanism which was proposed to be favorable for the high-valent di-oxo molybdenum complex MoO2Cl2 catalyzing the hydrosilylation. Our studies have identified the “carbonyl insertion pathway” to be the preferable pathway for three molybdenum hydrides catalyzing hydrosilylation of carbonyls. For Mo(NAr)H (Tp)(PMe3) (Tp?=?tris(pyrazolyl) borate), the proposed nonhydride mechanism experimentally is calculated to be more than 32.6?kcal/mol higher than the “carbonyl insertion pathway”. Our calculation results have derived meaningful mechanistic insights for the high-valent transition metal complexes catalyzing the reduction reaction.  相似文献   

13.
Summary The electrochemical reduction characteristics of the molyb-denum(VI)-and molybdenum(V)-ethylenediaminetetraacetate complexes, [(MoO3)2Y]4– and [Mo2O4Y]2– respectively have been investigated as a function of pH and free ligand concentration. The nature of chemical reduction of these two complexes with sodium borohydride and sodium dithionite have also been studied in acetate and borate buffers. The electroactive species undergoing electrode reductions have been ascertained by analysing polarograms of the complexes. A mechanism has been proposed to account for the differences observed in the reactivities of these two complexes.  相似文献   

14.
Metal carbide species have been proposed as a new type of chemical entity to activate methane in both gas‐phase and condensed‐phase studies. Herein, methane activation by the diatomic cation MoC+ is presented. MoC+ ions have been prepared and mass‐selected by a quadrupole mass filter and then allowed to interact with methane in a hexapole reaction cell. The reactant and product ions have been detected by a reflectron time‐of‐flight mass spectrometer. Bare metal Mo+ and MoC2H2+ ions have been observed as products, suggesting the occurrence of ethylene elimination and dehydrogenation reactions. The branching ratio of the C2H4 elimination channel is much larger than that of the dehydrogenation channel. Density functional theory calculations have been performed to explore in detail the mechanism of the reaction of MoC+ with CH4. The computed results indicate that the ethylene elimination process involves the occurrence of spin conversions in the C?C coupling (doublet→quartet) and hydrogen atom transfer (quartet→sextet) steps. The carbon atom in MoC+ plays a key role in methane activation because it becomes sp3 hybridized in the initial stages of the ethylene elimination reaction, which leads to much lower energy barriers and more stable intermediates. This study provides insights into the C?H bond activation and C?C coupling involved in methane transformation over molybdenum carbide‐based catalysts.  相似文献   

15.
An accurate and fast spectrophotometric method for the determination of acetylcysteine by silicomolybdenum blue has been established. The various effect factors on the determination of acetylcysteine by silicomolybdenum blue spectrophotometry are investigated in detail. The results show that under the optimum reaction conditions, SiO32‐ reacts with Mo7O246‐ to form silicon molybdenum heteropoly acid (H4Si(Mo3O10)4). Then H4Si(Mo3O10)4 is reduced by hydrosulfuryl (‐SH) in acetylcysteine to form silicomolybdenum blue (H4Si(Mo3O10)2(Mo3O9)2). The absorbance of silicomolybdenum blue is measured at the maximal absorption wavelength of 735 nm, and the content of acetylcysteine can be calculated based on this absorbance. A good linear relationship is obtained between the absorbance of silicomolybdenum blue and the concentration of acetylcysteine in the range of 5.040∼25.20 μg⋅mL‐1. The linear regression equation is A = 0.0272 + 21.484C (mg⋅mL‐1), with a linear correlation coefficient of 0.9995. This proposed method has been successfully applied to the determination of acetylcysteine in pharmaceutical samples, and the results agree well with those obtained by pharmacopoeial method.  相似文献   

16.
The bis(hydride) dimolybdenum complex, [Mo2(H)2{HC(N‐2,6‐iPr2C6H3)2}2(thf)2], 2 , which possesses a quadruply bonded Mo2II core, undergoes light‐induced (365 nm) reductive elimination of H2 and arene coordination in benzene and toluene solutions, with formation of the MoI2 complexes [Mo2{HC(N‐2,6‐iPr2C6H3)2}2(arene)], 3?C6H6 and 3?C6H5Me , respectively. The analogous C6H5OMe, p‐C6H4Me2, C6H5F, and p‐C6H4F2 derivatives have also been prepared by thermal or photochemical methods, which nevertheless employ different Mo2 complex precursors. X‐ray crystallography and solution NMR studies demonstrate that the molecule of the arene bridges the molybdenum atoms of the MoI2 core, coordinating to each in an η2 fashion. In solution, the arene rotates fast on the NMR timescale around the Mo2‐arene axis. For the substituted aromatic hydrocarbons, the NMR data are consistent with the existence of a major rotamer in which the metal atoms are coordinated to the more electron‐rich C?C bonds.  相似文献   

17.
Two series of glasses have been prepared and characterized. One with varying Li2O/P2O5 ratio and the other with varying Mo/P ratio. The relationship between the formation of the reduced state of molybdenum in phosphate glasses and the type of gases released in heating batch materials has been investigated. Effect of temperature on the valence state of molybdenum is also studied. Oxidation-reduction (redox) equilibrium of Mo5+/Mo6+ and environment of molybdenum (V) in these series of lithium-molybdenum-phosphate glasses are related to the glass composition and the possible structural units formation in the glasses.  相似文献   

18.
Reported here is the N2 cleavage of a one‐electron oxidation reaction using trans‐[Mo(depe)2(N2)2] ( 1 ) (depe=Et2PCH2CH2PEt2), which is a classical molybdenum(0)‐dinitrogen complex supported by two bidentate phosphine ligands. The molybdenum(IV) terminal nitride complex [Mo(depe)2N][BArf4] ( 2 ) (BArf4=B(3,5‐(CF3)2C6H3)4) is synthesized by the one‐electron oxidation of 1 upon addition of a mild oxidant, [Cp2Fe][BArf4] (Cp=C5H5), and proceeds by N2 cleavage from a MoII‐N=N‐MoII structure. In addition, the electrochemical oxidation reaction for 1 also cleaved the N2 ligand to give 2 . The dimeric Mo complex with a bridging N2 is detected by in situ resonance Raman and in situ UV‐vis spectroscopies during the electrochemical oxidation reaction for 1 . Density‐functional theory (DFT) calculations reveal that the unstable monomeric oxidized MoI species is converted into 2 via the dimeric structure involving a zigzag transition state.  相似文献   

19.
The oxidation of hypophosphite and phosphite by the Anderson‐type hexamolybdocobaltate(III), [H6CoIIIMo6O24]3?, anion was investigated at pH 2 and 1, respectively, in aqueous medium. The reaction is found to occur through an outer‐sphere mechanism with a prior weak complex formation between the reactants. Under the reaction conditions, the oxidant exists in the [H5CoIIIMo5O20]2?, [H6CoIIIMo6O24]3?, and [H4CoIII2Mo10O38]6?(dimer) forms, and [H5CoIIIMo5O20]2? is the active species. Inhibition of the reaction by the oxidant anion and added molybdate ion kinetically indicates existence of prior equilibria between various forms of the oxidant. Both hypophosphite and phosphite exists in their protonated forms. The reaction involves direct electron transfer from the phosphorus center to the anion‐generating free radicals in a rate‐determining step. The effect of ionic strength and change in the solvent polarity did not affect the rate of the reaction. A probable mechanism was proposed leading to a complicated rate law as a result of involvement of prior equilibria between various forms of the oxidant. The activation parameters were also determined and are in support of the proposed mechanism.  相似文献   

20.
The kinetics of oxidation of butane-2,3-diol by alkaline hexacyanoferrate (III), catalyzed by ruthenium trichloride has been studied spectrophotometrically. The reaction rate shows a zero-order dependence on oxidant, a first-order dependence on |Ru(III)|T, a Michaelis-Menten dependence on |diol|, and a variation complicated on |OH|. A reaction mechanism involving the existence of two active especies of catalyst, Ru(OH)2+ and Ru(OH)3, is proposed. Each one of the active species of catalyst forms an intermediate complex with the substrate, which disproportionates in the rate determining step. The complex disproportionation involves a hydrogen atom transfer from the α C(SINGLE BOND)H of alcohol to the oxygen of hydroxo ligand of ruthenium, to give Ru(II) and an intermediate radical which is then further oxidized. © 1997 John Wiley & Sons, Inc. Int J Chem Kinet 29: 1–7, 1997.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号