首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Asymmetric reactions involving (E)‐3‐aryl‐1‐(pyridin‐2‐yl‐N‐oxide)prop‐2‐en‐1‐ones and cyclic enol silyl ethers show good yields and excellent enantioselectivities (up to 99.9 % ee) when catalysed by bis(oxazoline)–CuII complexes. Different reaction pathways can be followed by different enol silyl ethers: with 2‐(trimethylsilyloxy)furan, a Mukaiyama–Michael adduct is obtained, whereas a hetero Diels–Alder cycloadduct was formed by using (1,2‐dihydronaphthalen‐4‐yloxy)trimethylsilane. In the latter reaction, the absolute configuration of the product is consistent with a reagent approach to the less hindered Re face of the coordinated substrate in the reactive complex.  相似文献   

2.
3‐(2‐Formylphenyl)‐1‐pyrazol‐1‐yl‐propenones undergo an asymmetric photorearrangement to benzo[d]cyclopropa[b]pyranones with up to >99 % ee, which is catalyzed by a bis‐cyclometalated rhodium catalyst in the presence of visible light. Mechanistic experiments and DFT calculations support a mechanism in which a photoexcited catalyst/substrate complex triggers an intramolecular hydrogen‐atom transfer followed by a highly stereocontrolled hetero‐Diels–Alder reaction. In this reaction scheme, the rhodium catalyst fulfills multiple functions by 1) enabling visible‐light π→π* excitation of the catalyst‐bound enone substrate, 2) facilitating the hydrogen‐atom transfer, and 3) providing the asymmetric induction for the hetero‐Diels–Alder reaction.  相似文献   

3.
Asymmetric hetero‐Diels‐Alder (AHDA) reactions provide a multitude of opportunities for the highly efficient, regio‐ and stereoselective construction of various heterocycles in enantiomerically pure form. The asymmetric aza‐Diels‐Alder (A‐aza‐DA) reaction using diversely hetero‐dienophiles and hetero‐dienes have been increasingly developed as a valuable method for the synthesis of functionalized nitrogen ring systems. The purpose of this review is to give a detailed discussion of the A‐aza‐DA reaction particularly, the stereoselective reactions of imines as dienophiles with Dainshefsky dienes to obtain optically pure aza‐Diels‐Alder products. The development of stereoselective variants of the reaction make use of imines as the dienophile and Dainshefsky dienes is at the forefront of these studies. This review updates the A‐aza‐DA reactions covering the literature from 1972 till date  相似文献   

4.
An efficient approach for the synthesis of a variety of C‐aryl and spiro‐C‐aryl glycosides is described. This diversity‐oriented strategy employed here relies on a sequential enyne metathesis to generate the 1,3‐diene moiety and Diels–Alder reaction with different dienophiles followed by aromatisation. Whereas cross‐enyne metathesis with ethylene gas is used to install the 1,3‐diene moiety at the anomeric centre for the synthesis of C‐aryl glycosides, an intramolecular enyne metathesis on the sugar enyne is performed to generate the 1,3‐diene moiety for the synthesis of spiro‐C‐aryl glycosides. Efforts to extend this strategy to the synthesis of the core structure of natural C‐aryl glycoside gilvocarcin are also described. A combination of both C‐aryl and spiro‐C‐aryl glycosides in the same moiety to combine the features thereof has also been accomplished. A tandem enyne metathesis/Diels–Alder reaction/aromatisation has also been attempted to directly access the C‐aryl glycosides in one pot albeit in low yield.  相似文献   

5.
Enantioselective formal hetero‐Diels‐Alder reactions of trifluoromethylated enones and 2‐amino‐1,3‐butadienes generated in situ from aliphatic acyclic enones and chiral primary amines are reported. The corresponding tetrahydropyran‐4‐ones are formed in up to 94 % yield and with up to 94 % ee. The reaction was carried out through a stepwise mechanism, including initial aminocatalytic aldol condensation of 2‐amino‐1,3‐butadiene to the trifluoromethylated carbonyl group followed by an intramolecular oxa‐Michael addition. Both NMR investigation and theoretical calculations on the transition state indicate that the protonated tertiary amine could effectively activate the carbonyl group of the trifluoromethyl ketone to promote the addition process through hydrogen‐bonding interaction of N?H???F and N?H???O simultaneously, and thus provide a chiral environment for the approach of amino‐1,3‐butadienes to the activated trifluoromethyl ketone, resulting in high enantioselectivity.  相似文献   

6.
Both enantiomers of cis‐ and trans‐fused 3,4,4a,8a‐tetrahydro‐2H,5H‐pyrano[2,3‐b]pyran‐7‐carboxylates have been obtained in high diastereoselectivities and enantioselectivities from the same starting materials using a tandem inverse‐electron‐demand hetero‐Diels–Alder/oxa‐Michael reaction catalyzed by modularly designed organocatalysts (MDOs). Diastereodivergence was achieved in these reactions through the direct control of the stereochemistry of the bridgehead atoms of the fused ring using new MDOs self‐assembled from both enantiomers of proline and cinchona alkaloid thiourea derivatives.  相似文献   

7.
A new approach for synthesis of fawcettimine‐type Lycopodium alkaloids is described. A divergent strategy was achieved by applying stereoselective Diels–Alder reaction followed by redox‐controlled elaboration. Eventually, (?)‐8‐deoxyserratinine, (+)‐fawcettimine, (?)‐lycopoclavamine‐A, (?)‐serratine, (?)‐lycopoclavamine‐B and (?)‐serratanidine were successfully accessed.  相似文献   

8.
Structurally diverse spiroheterocycles; spiro[pyrimido[2,1‐b ]benzothiazole‐3,3′‐chromene]‐2′,4′‐dione, spiro[pyrimido[2,1‐b ]benzothiazole‐3,5′‐pyrimidine]‐2′,4′,6′‐trione, and spiro[pyrimido[2,1‐b ]benz‐thiazole‐3,2′‐cyclohexane]‐1′,3′‐dione have been synthesized by an environmentally benign, efficient, and facile one‐pot pseudo‐four component reaction of 2‐aminobenzothiazoles with aromatic aldehydes and cyclic β‐diketones in aqueous medium. The process involves hetero‐Diels–Alder cycloaddition and provides facile access to spiroheterocycles fused with potentially interesting biologically active scaffolds. The configuration of hetero‐Diels–Alder cycloadduct has been ascertained through density functional theory calculations.  相似文献   

9.
Hetero Diels–Alder reaction of 3‐butyliminomethyl‐2‐aryl‐1H‐indoles (Schiff's base) 1 with p‐benzoquinone 2 affords six novel 5‐butyl‐11a‐aryl‐4a,5,11,11a‐tetrahydro‐11bH‐indolo[3,2‐c]quinoline‐1,4‐diones 3 in good yields. All the reactions proceeded with complete diastereoselectivity giving only one product in each case, which was characterized on the basis of its elemental analyses and spectral data (IR, 1H NMR, and Mass).  相似文献   

10.
A highly regio‐ and stereoselective hetero Diels–Alder cycloaddition of indene with N‐sulfonyl‐1‐aza‐1,3‐butadiene was achieved. Subsequent transformation of the 5H‐indeno [l,2‐b]pyridine via elimination and reduction provides a new route to azafluorenone (e.g., 1‐methyl‐4‐azafluorene) for the synthesis of onychnine.  相似文献   

11.
In this review, the recent developments in catalytic asymmetric inverse‐electron‐demand hetero‐Diels−Alder reaction, which is recognized as one of the most powerful routes to construct highly functionalized and enantioenriched six‐membered heterocycles, are described. The article is organized on the basis of different kinds of electron‐deficient heterodienes, including α,β‐unsaturated ketones/aldehydes, o‐benzoquinones, α,β‐unsaturated imines, N‐aryl imines, o‐benzoqinone imides, and other aza‐olefins.  相似文献   

12.
Salvinorin A ( 1 ) is natural hallucinogen that binds the human κ‐opioid receptor. A total synthesis has been developed that parlays the stereochemistry of l ‐(+)‐tartaric acid into that of (?)‐ 1 via an unprecedented allylic dithiane intramolecular Diels–Alder reaction to obtain the trans‐decalin scaffold. Tsuji allylation set the C9 quaternary center and a late‐stage stereoselective chiral ligand‐assisted addition of a 3‐titanium furan upon a C12 aldehyde/C17 methyl ester established the furanyl lactone moiety. The tartrate diol was finally converted into the C1,C2 keto‐acetate.  相似文献   

13.
A concise and highly stereoselective total synthesis of the Daphniphyllum alkaloids (?)‐daphenylline has been accomplished. The synthesis was started from (S)‐carvone and proceeded via a stereoselective Mg(ClO4)2‐catalyzed intramolecular amide addition cyclization, an intramolecular Diels–Alder reaction to construct the ABCD tetracyclic core architecture, and a Robinson annulation coupled with an oxidative aromatization sequence. Finally, the DF ring system was installed through an intramolecular Friedel–Crafts cyclization. The total synthesis of (?)‐daphenylline is achieved in 19 steps in the longest reaction sequence and in 7.6 % overall yield.  相似文献   

14.
Two new structurally isomeric, 2‐(2,4,4‐trimethyl‐3,4‐dihydro‐2H‐benzo[h]chromen‐2‐yl)‐1‐naphthol ( 1 ) and 3‐(2,4,4‐trimethyl‐3,4‐dihydro‐2H‐benzo[g]chromen‐2‐yl)‐2‐naphthol ( 3 ) have been synthesized from 2‐acetyl‐1‐naphthol and ethyl‐3‐hydroxy‐2‐naphthoate, respectively, involving Grignard reaction, dehydration of the corresponding tertiary alcohols, and hetero Diels–Alder dimerization. The two benzochromenes ( 1 and 3 ) have been fully characterized by IR, NMR, and HRESIMS data. Their structures are further supported by crystallography of their corresponding acetates ( 2 and 4 ). J. Heterocyclic Chem., (2011).  相似文献   

15.
A highly enantioselective hetero‐Diels–Alder reaction of Danishefsky’s diene with α‐ketoesters and isatins has been realized by using a chiral N,N′‐dioxide/MgII complex. In the presence of only 0.1–0.5 mol % catalyst, a series of substrates were transformed into the corresponding tetrasubstituted 2,3‐dihydropyran‐4‐ones in up to 99 % yield and more than 99 % ee in two hours.  相似文献   

16.
Highly enantioselective Diels–Alder (DA) and inverse‐electron‐demand hetero‐Diels–Alder (HDA) reactions of β,γ‐unsaturated α‐ketoesters with cyclopentadiene catalyzed by chiral N,N′‐dioxide–Cu(OTf)2 (Tf=triflate) complexes have been developed. Quantitative conversion of β,γ‐unsaturated α‐ketoesters and excellent diastereoselectivities (up to 99:1) and enantioselectivities (up to >99 % ee) were observed for a broad range of substrates. Both aromatic and aliphatic β,γ‐unsaturated α‐ketoesters were found to be suitable substrates for the reactions. Moreover, the chemoselectivity of the DA and HDA adducts were improved by regulating the reaction temperature. Good to high chemoselectivity (up to 94 %) of the DA adducts were obtained at room temperature, and moderate chemoselectivity (up to 65 %) of the HDA adducts were achieved at low temperature. The reaction also featured mild reaction conditions, a simple procedure, and remarkably low catalyst loading (0.1–1.5 mol %). A strong positive nonlinear effect was observed.  相似文献   

17.
An unexpected double Diels–Alder (DDA) reaction of (E)‐2‐bromo‐4‐aryl‐1,3‐pentadiene was developed and resulted in a series of “butterfly‐like” bicyclo[2.2.2]octene derivatives in moderate to good yields without the need for a metal catalyst. The proposed mechanism involves a [1,5]‐sigmatropic hydrogen migration and HBr elimination. Through this decisive [1,5]‐hydrogen shift step, the electronic properties and steric hindrance of the conjugated diene substrate are completely altered and the DDA reaction of this potential diene synthon is successfully achieved.  相似文献   

18.
The title compound, C25H29N3O13S, has peripheral acetyl and carbo­methoxy groups which show disorder. The absolute structure, although known from the starting materials, was confirmed by the analysis. There are no intermolecular hydrogen bonds. This structure is of importance because it elucidates the pathway for hetero‐Diels–Alder reactions between di­methyl acetyl­enedi­carboxyl­ate and 6‐amino­pyridin‐4(3H)‐one derivatives catalyzed by tri­fluoro­acetic acid.  相似文献   

19.
The hetero‐Diels–Alder reaction is one of the most powerful transformations in the chemistry toolbox for the synthesis of aza‐ and oxa‐heterocycles embodying multiple stereogenic centers. However, as compared to other cycloadditions, in particular the dipolar cycloadditions and the Diels–Alder reaction, the hetero‐Diels–Alder reaction has been much less explored and exploited in organic synthesis. Nevertheless, this powerful transformation has opened up efficient and creative routes to biologically relevant small molecules and different natural products which contain six‐membered oxygen or nitrogen ring systems. Recent developments in this field, in particular in the establishment of enantioselectively catalyzed hetero‐Diels–Alder cycloadditions steered by a plethora of different catalysts and the application of the resulting small molecules in chemical biology and medicinal chemistry research, are highlighted in this Minireview.  相似文献   

20.
The unprecedented phospha‐aza‐Diels–Alder reaction between an activated electron‐poor imine and 2H‐phospholes yields 1‐phospha‐2‐azanorbornenes in a highly chemoselective and moderately diastereoselective reaction. The intermediate 2H‐phospholes, which act as dienes, are formed in situ from the corresponding 1H‐phospholes. Theoretical calculations confirm that the phospha‐aza‐Diels–Alder reaction is of normal electron demand. The reactive P?N bond in 1‐phospha‐2‐azanorbornenes can be cleaved by nucleophiles leading to the formation of 2,3‐dihydrophospholes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号