首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Hydrogenation and transfer hydrogenation of imines with cyclohexa‐1,4‐dienes, as well as with a representative Hantzsch ester dihydrogen surrogate, are reported. Both processes are catalyzed by tethered Ru?S complexes but differ in the activation mode of the dihydrogen source: cooperative activation of the H?H bond at the Ru?S bond leads to the corresponding Ru?H complex and protonation of the sulfur atom, whereas the same cationic Ru?S catalyst abstracts a hydride from a donor‐substituted cyclohexa‐1,4‐diene to form the neutral Ru?H complex and a low‐energy Wheland intermediate. A sequence of proton and hydride transfers on the imine substrate then yields an amine. The reaction pathways are analyzed computationally, and the established mechanistic pictures are in agreement with the experimental observations.  相似文献   

4.
5.
6.
First‐principles calculations based on density functional theory are used to investigate the electronic structure along with the stability, bonding mechanism, band gap, and charge transfer of metal‐functionalized silicene to envisage its hydrogen‐storage capacity. Various metal atoms including Li, Na, K, Be, Mg, and Ca are doped into the most stable configuration of silicene. The corresponding binding energies and charge‐transfer mechanisms are discussed from the perspective of hydrogen‐storage compatibility. The Li and Na metal dopants are found to be ideally suitable, not only for strong metal‐to‐substrate binding and uniform distribution over the substrate, but also for the high‐capacity storage of hydrogen. The stabilities of both Li‐ and Na‐functionalized silicene are also confirmed through molecular dynamics simulations. It is found that both of the alkali metals, Li+ and Na+, can adsorb five hydrogen molecules, attaining reasonably high storage capacities of 7.75 and 6.9 wt %, respectively, with average adsorption energies within the range suitable for practical hydrogen‐storage applications.  相似文献   

7.
The reactivity difference between the hydrogenation of CO2 catalyzed by various ruthenium bidentate phosphine complexes was explored by DFT. In addition to the ligand dmpe (Me2PCH2CH2PMe2), which was studied experimentally previously, a more bulky diphosphine ligand, dmpp (Me2PCH2CH2CH2PMe2), together with a more electron‐withdrawing diphosphine ligand, PNMeP (Me2PCH2NMeCH2PMe2), have been studied theoretically to analyze the steric and electronic effects on these catalyzed reactions. Results show that all of the most favorable pathways for the hydrogenation of CO2 catalyzed by bidentate phosphine ruthenium dihydride complexes undergo three major steps: cistrans isomerization of ruthenium dihydride complex, CO2 insertion into the Ru?H bond, and H2 insertion into the ruthenium formate ion. Of these steps, CO2 insertion into the Ru?H bond has the lowest barrier compared with the other two steps in each preferred pathway. For the hydrogenation of CO2 catalyzed by ruthenium complexes of dmpe and dmpp, cistrans isomerization of ruthenium dihydride complex has a similar barrier to that of H2 insertion into the ruthenium formate ion. However, in the reaction catalyzed by the PNMePRu complex, cistrans isomerization of the ruthenium dihydride complex has a lower barrier than H2 insertion into the ruthenium formate ion. These results suggest that the steric effect caused by the change of the outer sphere of the diphosphine ligand on the reaction is not clear, although the electronic effect is significant to cistrans isomerization and H2 insertion. This finding refreshes understanding of the mechanism and provides necessary insights for ligand design in transition‐metal‐catalyzed CO2 transformation.  相似文献   

8.
9.
By using the hybrid IMOMM(B3LYP:MM3) method, we examined the binap–RhI‐catalyzed oxidative‐addition and insertion steps of the asymmetric hydrogenation of the enamide 2‐acetylamino‐3‐phenylacrylic acid. We report a path that is energetically more favorable for the major enantiomer than for the minor enantiomer. This path follows the “lock‐and‐key” motif and leads to the major enantiomeric product via an energetically favorable binap–dihydride–RhIII–enamide complex. Our theoretical results are consistent with the mechanism that takes place via RhIII dihydride formation, that is, oxidative addition of H2 followed by enamide insertion.  相似文献   

10.
The hydrogenation of ethyl acetate to ethanol catalyzed by SNS pincer ruthenium complexes was computationally investigated by using DFT. Different from a previously proposed mechanism with fac‐[(SNS)Ru(PPh3)(H)2] ( 5′ ) as the catalyst, an unexpected direct hydride transfer mechanism with a mer‐SNS ruthenium complex as the catalyst, and two cascade catalytic cycles for hydrogenations of ethyl acetate to aldehyde and aldehyde to ethanol, is proposed base on our calculations. The new mechanism features ethanol‐assisted proton transfer for H2 cleavage, direct hydride transfer from ruthenium to the carbonyl carbon, and C?OEt bond cleavage. Calculation results indicate that the rate‐determining step in the whole catalytic reaction is the transfer of a hydride from ruthenium to the carbonyl carbon of ethyl acetate, with a total free energy barrier of only 26.9 kcal mol?1, which is consistent with experimental observations and significantly lower than the relative free energy of an intermediate in a previously postulated mechanism with 5′ as the catalyst.  相似文献   

11.
A series of cyclometalated diruthenium complexes with a redox‐active amine bridge were synthesized. Depending on the terminal ligands of the ruthenium components and the substituent on the amine unit, the one‐electron‐oxidized state can be either in the form of a weakly or strongly coupled mixed‐valence diruthenium complex, a fully charge‐delocalized three‐center system, or a bridge‐biased electrophore. This transition among different electronic forms was supported by electrochemistry, near‐infrared absorption, electron paramagnetic resonance, and density functional theory analysis.  相似文献   

12.
13.
Reaction of [RuCl(CNN)(dppb)] ( 1‐Cl ) (HCNN=2‐aminomethyl‐6‐(4‐methylphenyl)pyridine; dppb=Ph2P(CH2)4PPh2) with NaOCH2CF3 leads to the amine‐alkoxide [Ru(CNN)(OCH2CF3)(dppb)] ( 1‐OCH2CF3 ), whose neutron diffraction study reveals a short RuO ??? HN bond length. Treatment of 1‐Cl with NaOEt and EtOH affords the alkoxide [Ru(CNN)(OEt)(dppb)] ? (EtOH)n ( 1‐OEt?n EtOH ), which equilibrates with the hydride [RuH(CNN)(dppb)] ( 1‐H ) and acetaldehyde. Compound 1‐OEt?n EtOH reacts reversibly with H2 leading to 1‐H and EtOH through dihydrogen splitting. NMR spectroscopic studies on 1‐OEt?n EtOH and 1‐H reveal hydrogen bond interactions and exchange processes. The chloride 1‐Cl catalyzes the hydrogenation (5 atm of H2) of ketones to alcohols (turnover frequency (TOF) up to 6.5×104 h?1, 40 °C). DFT calculations were performed on the reaction of [RuH(CNN′)(dmpb)] ( 2‐H ) (HCNN′=2‐aminomethyl‐6‐(phenyl)pyridine; dmpb=Me2P(CH2)4PMe2) with acetone and with one molecule of 2‐propanol, in alcohol, with the alkoxide complex being the most stable species. In the first step, the Ru‐hydride transfers one hydrogen atom to the carbon of the ketone, whereas the second hydrogen transfer from NH2 is mediated by the alcohol and leads to the key “amide” intermediate. Regeneration of the hydride complex may occur by reaction with 2‐propanol or with H2; both pathways have low barriers and are alcohol assisted.  相似文献   

14.
The effect on the hydrogen storage attributes of magnesium hydride (MgH2) of the substitution of Mg by varying fractions of Al and Si is investigated by an ab initio plane‐wave pseuodopotential method based on density functional theory. Three supercells, namely, 2×2×2, 3×1×1 and 5×1×1 are used for generating configurations with varying amounts (fractions x=0.0625, 0.1, and 0.167) of impurities. The analyses of band structure and density of states (DOS) show that, when a Mg atom is replaced by Al, the band gap vanishes as the extra electron occupies the conduction band minimum. In the case of Si‐substitution, additional states are generated within the band gap of pure MgH2—significantly reducing the gap in the process. The reduced band gaps cause the Mg? H bond to become more susceptible to dissociation. For all the fractions, the calculated reaction energies for the stepwise removal of H2 molecules from Al‐ and Si‐substituted MgH2 are much lower than for H2 removal from pure MgH2. The reduced stability is also reflected in the comparatively smaller heats of formation (ΔHf) of the substituted MgH2 systems. Si causes greater destabilization of MgH2 than Al for each x. For fractions x=0.167 of Al, x=0.1, 0.167 of Si (FCC) and x=0.0625, 0.1 of Si (diamond), ΔHf is much less than that of MgH2 substituted by a fraction x=0.2 of Ti (Y. Song, Z. X. Guo, R. Yang, Mat. Sc. & Eng. A 2004 , 365, 73). Hence, we suggest the use of Al or Si instead of Ti as an agent for decreasing the dehydrogenation reaction and energy, consequently, the dehydrogenation temperature of MgH2, thereby improving its potential as a hydrogen storage material.  相似文献   

15.
Interactions between alkali‐metal azides and metal–organic framework (MOF) derivatives, namely, the first and third members of the isoreticular MOF (IRMOF) family, IRMOF‐1 and IRMOF‐3, are studied within the density functional theory (DFT) paradigm. The investigations take into account different models of the selected IRMOFs. The mutual influence between the alkali‐metal azides and the π rings or Zn centers of the involved MOF derivatives are studied by considering the interactions both of the alkali‐metal cations with model aromatic centers and of the alkali‐metal azides with distinct sites of differently sized models of IRMOF‐1 and IRMOF‐3. Several exchange and correlation functionals are employed to calculate the corresponding interaction energies. Remarkably, it is found that, with increasing alkali‐metal atom size, the latter decrease for cations interacting with the π‐ring systems and increase for the azides interacting with the MOF fragments. The opposite behavior is explained by stabilization effects on the azide moieties and determined by the Zn atoms, which constitute the inorganic vertices of the IRMOF species. Larger cations can, in fact, coordinate more efficiently to both the aromatic center and the azide anion, and thus stabilizing bridging arrangements of the azide between one alkali‐metal and two Zn atoms in an η2 coordination mode are more favored.  相似文献   

16.
A density functional theory (DFT) analysis was conducted on the hydrogenation of 2‐alkyl‐anthraquinone (AQ), including 2‐ethyl‐9,10‐anthraquinone (eAQ) and 2‐ethyl‐5,6,7,8‐tetrahydro‐9,10‐anthraquinone (H4eAQ), to the corresponding anthrahydroquinone (AQH2) over a Pd6H2 cluster. Hydrogenation of H4eAQ is suggested to be more favorable than that of eAQ owing to a higher adsorption energy of the reactant (H4eAQ), lower barrier of activation energy, and smaller desorption energy of the target product (2‐ethyl‐5,6,7,8‐tetrahydro‐9,10‐anthrahydroquinone, H4eAQH2). For the most probable reaction routes, the energy barrier of the second hydrogenation step of AQ is circa 8 kcal mol?1 higher than that of the first step. Electron transfer of these processes were systematically investigated. Facile electron transfer from Pd6H2 cluster to AQ/AQH intermediate favors the hydrogenation of C=O. The electron delocalization over the boundary aromatic ring of AQ/AQH intermediate and the electron‐withdrawing effect of C=O are responsible for the electron transfer. In addition, a pathway of the electron transfer is proposed for the adsorption and subsequent hydrogenation of AQ on the surface of Pd6H2 cluster. The electron transfers from the abstracted H atom (reactive H) to a neighbor Pd atom (PdH), and finally goes to the carbonyl group through the C4 atom of AQ aromatic ring (C4).  相似文献   

17.
The interactions in the complexes of tetracyanothylene (TCNE) with benzene and p‐xylene, often classified as weak electron donor–acceptor (EDA) complexes, are investigated by a range of quantum chemical methods including intermolecular perturbation theory at the DFT‐SAPT (symmetry‐adapted perturbation theory combined with density functional theory) level and explicitly correlated coupled‐cluster theory at the CCSD(T)‐F12 level. The DFT‐SAPT interaction energies for TCNE–benzene and TCNE–p‐xylene are estimated to be ?35.7 and ?44.9 kJ mol?1, respectively, at the complete basis set limit. The best estimates for the CCSD(T) interaction energy are ?37.5 and ?46.0 kJ mol?1, respectively. It is shown that the second‐order dispersion term provides the most important attractive contribution to the interaction energy, followed by the first‐order electrostatic term. The sum of second‐ and higher‐order induction and exchange–induction energies is found to provide nearly 40 % of the total interaction energy. After addition of vibrational, rigid‐rotor, and translational contributions, the computed internal energy changes on complex formation approach results from gas‐phase spectrophotometry at elevated temperatures within experimental uncertainties, while the corresponding entropy changes differ substantially.  相似文献   

18.
A defined (P^N^N^P)–Ru complex possessing tertiary amines within the ligand backbone proved to be highly active both in transfer hydrogenations and hydrogenations of a variety of ketones. As compared to the existing catalytic systems, no bifunctional activation of H2 or of the substrate by the metal center and a secondary amine within the ligand backbone is required to obtain high activities at catalyst loadings of down to 10 ppm.  相似文献   

19.
A new crystal of a charge‐transfer (CT) complex was prepared through supramolecular assembly and it has unique two‐dimensional (2D) morphology. The CT nature of the ground and excited states of this new Bpe‐TCNB cocrystal (BTC) were confirmed by electron spin resonance measurements, spectroscopic studies, and theoretical calculations, thus providing a comprehensive understanding of the CT interactions in organic donor–acceptor systems. And the lowest CT1 excitons are responsible for the efficient photoluminescence (ΦPL=19 %), which can actively propagate in individual 2D BTCs without anisotropy, thus implying that the optical waveguide property of the crystal is not related to the molecular stacking structure. This unique 2D CT cocrystal exhibits potential for use in functional photonic devices in the next‐generation optoelectronic communications.  相似文献   

20.
The bis(hydride) dimolybdenum complex, [Mo2(H)2{HC(N‐2,6‐iPr2C6H3)2}2(thf)2], 2 , which possesses a quadruply bonded Mo2II core, undergoes light‐induced (365 nm) reductive elimination of H2 and arene coordination in benzene and toluene solutions, with formation of the MoI2 complexes [Mo2{HC(N‐2,6‐iPr2C6H3)2}2(arene)], 3?C6H6 and 3?C6H5Me , respectively. The analogous C6H5OMe, p‐C6H4Me2, C6H5F, and p‐C6H4F2 derivatives have also been prepared by thermal or photochemical methods, which nevertheless employ different Mo2 complex precursors. X‐ray crystallography and solution NMR studies demonstrate that the molecule of the arene bridges the molybdenum atoms of the MoI2 core, coordinating to each in an η2 fashion. In solution, the arene rotates fast on the NMR timescale around the Mo2‐arene axis. For the substituted aromatic hydrocarbons, the NMR data are consistent with the existence of a major rotamer in which the metal atoms are coordinated to the more electron‐rich C?C bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号