首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two polymorphs of the spin crossover (SCO) compound [Fe(1,3‐bpp)2](ClO4)2 ( 1 and 2 ; 1,3‐bpp=2‐(pyrazol‐1‐yl)‐6‐(pyrazol‐3‐yl)pyridine) were prepared using a novel, stepwise procedure. Crystals of 1 deposit from dry solvents, while 2 is obtained from a solid‐state procedure, by sequentially removing lattice H2O molecules from the solvatomorph [Fe(1,3‐bpp)2](ClO4)2?2 H2O ( 2 ?2 H2O), using single‐crystal‐to‐single‐crystal (SCSC) transformations. Hydrate 2 ?2 H2O is obtained through the same reaction as 1 , now with 2.5 % of water added. Compounds 2 and 2 ?2 H2O are unstable in the atmosphere and absorb or lose one equivalent of water, respectively, to both yield the stable solvatomorph [Fe(1,3‐bpp)2](ClO4)2?H2O ( 2 ?H2O), also following SCSC processes. The four derivatives have been characterised by single‐crystal X‐ray diffraction (SCXRD). Furthermore, the homogeneity of the various compounds as well as their SCSC interconversions have been confirmed by powder X‐ray diffraction (PXRD). Polymorphs 1 and 2 exhibit abrupt SCO behaviour near room temperature with T1/2↑=279/316 K and T1/2↓=276/314 K (near 40 K of shift) and different cooperativity.  相似文献   

2.
Two new heterobimetallic porous coordination polymers with the formula [Fe(TPT)2/3{MI(CN)2}2] ? nSolv (TPT=[(2,4,6‐tris(4‐pyridyl)‐1,3,5‐triazine]; MI=Ag (nSolv=0, 1 MeOH, 2 CH2Cl2), Au (nSolv=0, 2 CH2Cl2)) have been synthesized and their crystal structures were determined at 120 K and 293 K by single‐crystal X‐ray analysis. These structures crystallized in the trigonal R‐3m space group. The FeII ion resides at an inversion centre that defines a [FeN6] coordination core. Four dicyanometallate groups coordinate at the equatorial positions, whilst the axial positions are occupied by the TPT ligand. Each TPT ligand is centred in a ternary axis and bridges three crystallographically equivalent FeII ions, whilst each dicyanometallate group bridges two crystallographically equivalent FeII ions that define a 3D network with the topology of NbO. There are two such networks, which interpenetrate each other, thereby giving rise to large spaces in which very labile solvent molecules are included (CH2Cl2 or MeOH). Crystallographic analysis confirmed the reversible structural changes that were associated with the occurrence of spin‐crossover behaviour at the FeII ions, the most significant structural variation being the change in unit‐cell volume (about 59 Å3 per FeII ion). The spin‐crossover behaviour has been monitored by means of thermal dependence of the magnetic properties, Mössbauer spectroscopy, and calorimetry.  相似文献   

3.
A dual‐function material in which ferroelectricity and spin crossover coexist in the same temperature range has been obtained. Our synthetic strategy allows the construction of acentric crystal structures in a predictable way and is based on the high directionality of hydrogen bonds. The well‐known iron(II) spin crossover complex [Fe(bpp)2]2+ (bpp=2,6‐bis(pyrazol‐3‐yl)pyridine), a four‐fold noncentrosymmetric H‐bond donor, was combined with a disymmetric H‐bond acceptor such as the isonicotinate (isonic) anion to afford [Fe(bpp)2](isonic)2⋅2 H2O. This low‐spin iron(II) compound crystallizes in the acentric nonpolar I space group and shows piezoelectricity and SHG properties. Upon dehydration, it undergoes a single‐crystal to single‐crystal structural rearrangement to a monoclinic polar Pc phase that is ferroelectric and exhibits spin crossover.  相似文献   

4.
Based on the 2,6‐bis(pyrazol‐3‐yl)pyridine ligand (H2bpp) the hexanuclear iron(III) complex [Fe6(bpp)4(μ3‐O)2(μ‐OMe)3(μ‐OH)Cl2] ( 1 ) was synthesized. The reaction with iron(II) chloride and additional pyridine leads to the exclusive formation of the complex through self‐assembly process. Six octahedrally coordinated iron atoms are linked through the pyrazolido groups of four H2bpp ligands. These are further linked through bridging hydroxido, methoxido, and oxido groups. The complex has been characterized by IR spectroscopy, ESI mass spectrometry, elemental analysis and X‐ray crystallography. Temperature‐dependent magnetic measurements indicate strong antiferromagnetic exchange interaction between the high‐spin iron(III) ions within the complex, which leads to an S = 0 spin ground state. As a result of the two Fe3(μ3‐O) fragments two frustrated exchange pathways are present. In addition the properties of H2bpp as a potential capping ligand for the synthesis of heteroleptic trinuclear complexes based on the triaminoguanidine core is investigated.  相似文献   

5.
The spin crossover salt [Fe(bpp)2](isonicNO)2⋅ 2.4 H2O ( 1 ⋅2.4 H2O) (bpp=2,6-bis(pyrazol-3-yl)pyridine; isonicNO=isonicotinate N-oxide anion) exhibits a very abrupt spin crossover at T1/2=274.4 K. This triggers a supramolecular linkage (H-bond) isomerization that responds reversibly towards light irradiation or temperature change. Isotopic effects in the thermomagnetic behavior reveal the importance of hydrogen bonds in defining the magnetic state. Further, the title compound can be reversibly dehydrated to afford 1 , a material that also exhibits spin crossover coupled to H-bond isomerization, leading to strong kinetic effects in the thermomagnetic properties.  相似文献   

6.
A substituted 2,6‐bis(pyrazol‐3‐yl)pyridine (3‐bpp) ligand, H4L, created to facilitate intermolecular interactions in the solid, has been used to obtain four novel FeII complexes: [Fe(H4L)2](ClO4)2 ? 2 CH3NO2 ? 2 H2O, [Fe(H4L)(H2LBF2)](BF4) ? 5 C3H6O (H2LBF2 is an in situ modified version of H4L), [Fe(H4L)2](ClO4)2 ? 2 C3H7OH and [Fe(H4L)2](ClO4)2 ? 4 C2H5OH. Changing of spin‐inactive components (solvents, anions or distant ligand substituents) causes differences to the coordination geometry of the metal that are key to the magnetic proper‐ ties. Magnetic measurements show that, contrary to the previously published complex [Fe(H4L)2](ClO4)2 ? H2O ? 2 CH3COCH3, the newly synthesised compounds remain in the high‐spin (HS) state at all temperatures (5–300 K). A member of the known family of FeII/3‐bpp complexes, [Fe(3‐bpp)2](ClO4)2 ? 1.75 CH3COCH3 ? 1.5 Et2O, has also been prepared and characterised structurally. In the bulk, this compound exhibits a gradual and incomplete spin transition near 205 K. The single‐crystal structure is consistent with it being HS at 250 K and partially low spin at 90 K. Structural analysis of all these compounds reveals that the exact configuration of intermolecular interactions affects dramatically the local geometry at the metal, which ultimately has a strong influence on the magnetic properties. Along this line, the geometry of FeII in all published 3‐bpp compounds of known structure has been examined, both by calculating various distortion indices (Σ, Θ, θ and Φ) and by continuous shape measures (CShMs). The results reveal correlations between some of these parameters and indicate that the distortions from octahedral geometry observed on HS systems are mainly due to strains arising from intermolecular interactions. As previously suggested with other related compounds, we observe here that strongly HS‐distorted systems have a larger tendency to remain in that state.  相似文献   

7.
Two new isostructural iron(II) spin‐crossover (SCO) framework (SCOF) materials of the type [Fe(dpms)2(NCX)2] (dpms=4,4′‐dipyridylmethyl sulfide; X=S ( SCOF‐6(S) ), X=Se ( SCOF‐6(Se) )) have been synthesized. The 2D framework materials consist of undulating and interpenetrated rhomboid (4,4) nets. SCOF‐6(S) displays an incomplete SCO transition with only approximately 30 % conversion of high‐spin (HS) to low‐spin iron(II) sites over the temperature range 300–4 K (T1/2=75 K). In contrast, the NCSe? analogue, SCOF‐6(Se) , displays a complete SCO transition (T1/2=135 K). Photomagnetic characterizations reveal quantitative light‐ induced excited spin‐state trapping (LIESST) of metastable HS iron(II) sites at 10 K. The temperature at which the photoinduced stored information is erased is 58 and 50 K for SCOF‐6(S) and SCOF‐6(Se) , respectively. Variable‐pressure magnetic measurements were performed on SCOF‐6(S) , revealing that with increasing pressure both the T1/2 value and the extent of spin conversion are increased; with pressures exceeding 5.2 kbar a complete thermal transition is achieved. This study confirms that kinetic trapping effects are responsible for hindering a complete thermally induced spin transition in SCOF‐6(S) at ambient pressure due to an interplay between close T1/2 and T(LIESST) values.  相似文献   

8.
A dinuclear CoII complex, [Co2(tphz)(tpy)2]n+ (n=4, 3 or 2; tphz: tetrapyridophenazine; tpy: terpyridine), has been assembled using the redox‐active and strongly complexing tphz bridging ligand. The magnetic properties of this complex can be tuned from spin‐crossover with T1/2≈470 K for the pristine compound (n=4) to single‐molecule magnet with an ST=5/2 spin ground state when once reduced (n=3) to finally a diamagnetic species when twice reduced (n=2). The two successive and reversible reductions are concomitant with an increase of the spin delocalization within the complex, promoting remarkably large magnetic exchange couplings and high‐spin species even at room temperature.  相似文献   

9.
A mononuclear FeII complex, prepared with a Brønsted diacid ligand, H2L (H2L=2‐[5‐phenyl‐1H‐pyrazole‐3‐yl] 6‐benzimidazole pyridine), shows switchable physical properties and was isolated in five different electronic states. The spin crossover (SCO) complex, [FeII(H2L)2](BF4)2 ( 1A ), exhibits abrupt spin transition at T1/2=258 K, and treatment with base yields a deprotonated analogue [FeII(HL)2] ( 1B ), which shows gradual SCO above 350 K. A range of FeIII analogues were also characterized. [FeIII(HL)(H2L)](BF4)Cl ( 1C ) has an S=5/2 spin state, while the deprotonated complexes [FeIII(L)(HL)], ( 1D ), and (TEA)[FeIII(L)2], ( 1E ) exist in the low‐spin S=1/2 state. The electronic properties of the five complexes were fully characterized and we demonstrate in situ switching between multiple states in both solution and the solid‐state. The versatility of this simple mononuclear system illustrates how proton donor/acceptor ligands can vastly increase the range of accessible states in switchable molecular devices.  相似文献   

10.
Modular cyclodiphosph(V)azanes are synthesised and their affinity for chloride and actetate anions were compared to those of a bisaryl urea derivative ( 1 ). The diamidocyclodiphosph(V)azanes cis‐[{ArNHP(O)(μ‐tBu)}2] [Ar=Ph ( 2 ) and Ar=m‐(CF3)2Ph ( 3 )] were synthesised by reaction of [{ClP(μ‐NtBu)}2] ( 4 ) with the respective anilines and subsequent oxidation with H2O2. Phosphazanes 2 and 3 were obtained as the cis isomers and were characterised by multinuclear NMR spectroscopy, FTIR spectroscopy, HRMS and single‐crystal X‐ray diffraction. The cyclodiphosphazanes 2 and 3 readily co‐crystallise with donor solvents such as MeOH, EtOH and DMSO through bidentate hydrogen bonding, as shown in the X‐ray analyses. Cyclodiphosphazane 3 showed a remarkably high affinity (log[K]=5.42) for chloride compared with the bisaryl urea derivative 1 (log[K]=4.25). The affinities for acetate (AcO?) are in the same range ( 3 : log[K]=6.72, 1 : log[K]=6.91). Cyclodiphosphazane 2 , which does not contain CF3 groups, exhibits weaker binding to chloride (log[K]=3.95) and acetate (log[K]=4.49). DFT computations and X‐ray analyses indicate that a squaramide‐like hydrogen‐bond directionality and Cα?H interactions account for the efficiency of 3 as an anion receptor. The Cα?H groups stabilise the Z,Z‐ 3 conformation, which is necessary for bidentate hydrogen bonding, as well as coordinating with the anion.  相似文献   

11.
A dinuclear CoII complex, [Co2(tphz)(tpy)2]n+ (n=4, 3 or 2; tphz: tetrapyridophenazine; tpy: terpyridine), has been assembled using the redox‐active and strongly complexing tphz bridging ligand. The magnetic properties of this complex can be tuned from spin‐crossover with T1/2≈470 K for the pristine compound (n=4) to single‐molecule magnet with an ST=5/2 spin ground state when once reduced (n=3) to finally a diamagnetic species when twice reduced (n=2). The two successive and reversible reductions are concomitant with an increase of the spin delocalization within the complex, promoting remarkably large magnetic exchange couplings and high‐spin species even at room temperature.  相似文献   

12.
A series of metal coordination polymers, [Co2(NB)4(bpp)2(H2O)]·H2O ( 1 ), [Co2(e,e‐trans‐chdc)(e,a‐cis‐chdc)(bpp)2] ( 2 ), [Ni(e,e‐trans‐chdc)(bpp)(H2O)2] ( 3 ), [Ni2(PDA)2(bpp)2(H2O)3]·H2O ( 4 ), and [Ni‐(mBDC)(bpp)] ( 5 ) (NB = 3‐nitrobenzoate anion; bpp = 4,4′‐trimethylene dipyridine; chdc = cyclohexane‐1,4‐dicarboxylate anion; PDA = 1,4‐phenylenediacetate anion; mBDC = 1,3‐benzene dicarboxylate anion), were synthesized from metal ions and organic mixed‐ligands by hydrothermal reactions. The single crystal structure analysis revealed that 1, 3, and 4 were 2D sheets with bilayer (1 and 4) and 2‐fold interpenetrated layers (3), 2 is a 3D binodal (4,5)‐connected framework, and 5 is a 1D chains. The non‐covalent interactions of H‐bonds and π–π stacking caused this conformation of highly cross‐linked networks. Compounds 1‐5 were further characterized by thermal gravimetric analysis, powder X‐ray diffraction, UV‐vis, infrared, and PL spectroscopy.  相似文献   

13.
A new synthesis of (8‐quinolyl)‐5‐methoxysalicylaldimine (Hqsal‐5‐OMe) is reported and its crystal structure is presented. Two FeIII complexes, [Fe(qsal‐5‐OMe)2]Cl ? solvent (solvent=2 MeOH ? 0.5 H2O ( 1 ) and MeCN ? H2O ( 2 )) have been prepared and their structural, electronic and magnetic properties studied. [Fe(qsal‐5‐OMe)2] Cl ? 2 MeOH ? 0.5 H2O ( 1 ) exhibits rare crystallographically independent high‐spin and low‐spin FeIII centres at 150 K, whereas [Fe(qsal‐5‐OMe)2]Cl ? MeCN ? H2O ( 2 ) is low spin at 100 K. In both structures there are extensive π–π and C? H???π interactions. SQUID magnetometry of 2 reveals an unusual abrupt stepped‐spin crossover with T1/2=245 K and 275 K for steps 1 and 2, respectively, with a slight hysteresis of 5 K in the first step and a plateau of 15 K between the steps. In contrast, 1 is found to undergo an abrupt half‐spin crossover also with a hysteresis of 10 K. The two compounds are the first FeIII complexes of a substituted qsal ligand to exhibit abrupt spin crossover. These conclusions are supported by 57Fe Mössbauer spectroscopy. Both complexes exhibit reversible reduction to FeII at ?0.18 V and irreversible oxidation of the coordinated qsal‐5‐OMe ligand at +1.10 V.  相似文献   

14.
A series of three new 1‐(2,6‐diisopropylphenyl)‐2,5‐di(2‐thienyl)pyrrole‐based polymers such as poly[1‐(2,6‐diisopropylphenyl)‐2,5‐di(2‐thienyl)pyrrole] ( PTPT ), poly[1,4‐(2,5‐bis(octyloxy)phenylene)‐alt‐5,5'‐(1‐(2,6‐diisopropylphenyl)‐2,5‐di(2‐thienyl)pyrrole)] ( PPTPT ), and poly[2,5‐(3‐octylthiophene)‐alt‐5,5'‐(1‐(2,6‐diisopropylphenyl)‐2,5‐di(2‐thienyl)pyrrole)] ( PTTPT ) were synthesized and characterized. The new polymers were readily soluble in common organic solvents and the thermogravimetric analysis showed that the three polymers are thermally stable with the 5% degradation temperature >379 °C. The absorption maxima of the polymers were 478, 483, and 485 nm in thin film and the optical band gaps calculated from the onset wavelength of the optical absorption were 2.15, 2.20, and 2.13 eV, respectively. Each of the polymers was investigated as an electron donor blending with PC70BM as an electron acceptor in bulk heterojunction (BHJ) solar cells. BHJ solar cells were fabricated in ITO/PEDOT:PSS/polymer:PC70BM/TiOx/Al configurations. The BHJ solar cell with PPTPT :PC70BM (1:5 wt %) showed the power conversion efficiency (PCE) of 1.35% (Jsc = 7.41 mA/cm2, Voc = 0.56 V, FF = 33%), measured using AM 1.5G solar simulator at 100 mW/cm2 light illumination. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

15.
A comprehensive study of the magnetic and photomagnetic behaviors of cis‐[Fe(picen)(NCS)2] (picen=N,N′‐bis(2‐pyridylmethyl)1,2‐ethanediamine) was carried out. The spin‐equilibration was extremely slow in the vicinity of the thermal spin‐transition. When the cooling speed was slower than 0.1 K min?1, this complex was characterized by an abrupt thermal spin‐transition at about 70 K. Measurement of the kinetics in the range 60–70 K was performed to approach the quasi‐static hysteresis loop. At low temperatures, the metastable HS state was quenched by a rapid freezing process and the critical T(TIESST) temperature, which was associated with the thermally induced excited spin‐state‐trapping (TIESST) effect, was measured. At 10 K, this complex also exhibited the well‐known light‐induced excited spin‐state‐trapping (LIESST) effect and the T(LIESST) temperature was determined. The kinetics of the metastable HS states, which were generated from the freezing effect and from the light‐induced excitation, was studied. Single‐crystal X‐ray diffraction as a function of speed‐cooling and light conditions at 30 K revealed the mechanism of the spin‐crossover in this complex as well as some direct relationships between its structural properties and its spin state. This spin‐crossover (SCO) material represents a fascinating example in which the metastability of the HS state is in close vicinity to the thermal spin‐transition region. Moreover, it is a beautiful example of a complex in which the metastable HS states can be generated, and then compared, either by the freezing effect or by the LIESST effect.  相似文献   

16.
The title compound, [Zn2(C5H6O4)2(C13H14N2)]n or [Zn2(glu)2(bpp)]n, is a novel zinc polymer based on mixed flexible glutarate (glu) and 1,3‐di‐4‐pyridylpropane (bpp) ligands. The ZnII center has a distorted tetra­hedral geometry and the central atom of the bpp ligand is located at a special site with a C2 axis passing through it. A layer is formed by Zn–glu bonding. Such layers are pillared by bpp ligands, forming a three‐dimensional framework with large channels. The inverted inter­penetration of two three‐dimensional frameworks completes the mol­ecular structure.  相似文献   

17.
Two coordination polymers, [Cd(Heidc)(bpp)]n ( 1 ) and [Zn3 (eidc)2(bpp)(H2O)2] · 2H2O}n ( 2 ) (H3eidc = 2‐ethyl‐4,5‐imidazole dicarboxylic acid, bpp = 1,3‐bis(4‐pyridyl)propane) were hydrothermally synthesized and characterized by elemental analysis, IR, spectroscopy single‐crystal X‐ray diffraction, and thermogravimetric analyses. Compound 1 features a 2D layer formed by C–H ··· π stacking interactions between adjacent chains, whereas compound 2 shows a 3D (83)2(85.10)‐tfc framework constructed of the 2D (6,3) layer. The result demonstrates that the central metal atoms play a key role in governing the coordination motifs. Moreover, solid‐state properties such as thermal stabilities and photoluminescence of 1 and 2 were also investigated.  相似文献   

18.
We previously reported the dinuclear material [FeII2(ddpp)2(NCS)4] ? 4 CH2Cl2 ( 1? 4 CH2Cl2; ddpp=2,5‐di(2′,2′′‐dipyridylamino)pyridine) and its partially desolvated analogue ( 1? CH2Cl2), which undergo two‐ and one‐step spin‐crossover (SCO) transitions, respectively. Here, we manipulate the type and degree of solvation in this system and find that either a one‐ or two‐step spin transition can be specifically targeted. The chloroform clathrate 1? 4 CHCl3 undergoes a relatively abrupt one‐step SCO, in which the two equivalent FeII sites within the dinuclear molecule crossover simultaneously. Partial desolvation of 1? 4 CHCl3 to form 1? 3 CHCl3 and 1? CHCl3 occurs through single‐crystal‐to‐single‐crystal processes (monoclinic C2/c to P21/n to P21/n) in which the two equivalent FeII sites become inequivalent sites within the dinuclear molecule of each phase. Both 1? 3 CHCl3 and 1? CHCl3 undergo one‐step spin transitions, with the former having a significantly higher SCO temperature than 1? 4 CHCl3 and the latter, and each has a broader SCO transition than 1? 4 CHCl3, attributable to the overlap of two SCO steps in each case. Further magnetic manipulation can be carried out on these materials through reversibly resolvating the partially desolvated material with chloroform to produce the original one‐step SCO, or with dichloromethane to produce a two‐step SCO reminiscent of that seen for 1? 4 CH2Cl2. Furthermore, we investigate the light‐induced excited spin state trapping (LIESST) effect on 1? 4 CH2Cl2 and 1? CH2Cl2 and observe partial LIESST activity for the former and no activity for the latter.  相似文献   

19.
在室温下, 由Cu(NO3)2 、1,3 -二(4 -吡啶基)丙烷(bpp)、4,4 ’ -联苯二甲酸(H2bpdc)和2,5-噻吩二甲酸(H2tdc)制备出两种新型铜( II)配位聚合物[Cu(bpp)2(bpdc)(H2O)2]n·2nH2O, 1 和[Cu(bpp)2]n·n(tdc) 7.5nH2O, 2。两个配位聚合物均为一维线型结构,铜原子均采取变形的八面体结构,在轴线方向上的两个水分子与铜原子存在较弱的配位作用。在配合物1中,两个bpdc羧酸根离子与铜原子配位,而2中的tdc羧酸离子没有与铜原子键合,只是作为反离子平衡电荷。在两个产物中, 配体bpp具有不同的构象。热重分析表明配合物1与2分别在110°C和160°C以下是稳定的。  相似文献   

20.
Three iron(II) complexes, [Fe(TPMA)(BIM)](ClO4)2?0.5H2O ( 1 ), [Fe(TPMA)(XBIM)](ClO4)2 ( 2 ), and [Fe(TPMA)(XBBIM)](ClO4)2 ?0.75CH3OH ( 3 ), were prepared by reactions of FeII perchlorate and the corresponding ligands (TPMA=tris(2‐pyridylmethyl)amine, BIM=2,2′‐biimidazole, XBIM=1,1′‐(α,α′‐o‐xylyl)‐2,2′‐biimidazole, XBBIM=1,1′‐(α,α′‐o‐xylyl)‐2,2′‐bibenzimidazole). The compounds were investigated by a combination of X‐ray crystallography, magnetic and photomagnetic measurements, and Mössbauer and optical absorption spectroscopy. Complex 1 exhibits a gradual spin crossover (SCO) with T1/2=190 K, whereas 2 exhibits an abrupt SCO with approximately 7 K thermal hysteresis (T1/2=196 K on cooling and 203 K on heating). Complex 3 is in the high‐spin state in the 2–300 K range. The difference in the magnetic behavior was traced to differences between the inter‐ and intramolecular interactions in 1 and 2 . The crystal packing of 2 features a hierarchy of intermolecular interactions that result in increased cooperativity and abruptness of the spin transition. In 3 , steric repulsion between H atoms of one of the pyridyl substituents of TPMA and one of the benzene rings of XBBIM results in a strong distortion of the FeII coordination environment, which stabilizes the high‐spin state of the complex. Both 1 and 2 exhibit a photoinduced low‐spin to high‐spin transition (LIESST effect) at 5 K. The difference in the character of intermolecular interactions of 1 and 2 also manifests in the kinetics of the decay of the photoinduced high‐spin state. For 1 , the decay rate constant follows the single‐exponential law, whereas for 2 it is a stretched exponential, reflecting the hierarchical nature of intermolecular contacts. The structural parameters of the photoinduced high‐spin state at 50 K are similar to those determined for the high‐spin state at 295 K. This study shows that N‐alkylation of BIM has a negligible effect on the ligand field strength. Therefore, the combination of TPMA and BIM offers a promising ligand platform for the design of functionalized SCO complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号