首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
π‐Extended TCBD‐porphyrins that contained a 1,1,4,4‐tetracyanobuta‐1,3‐diene unit were prepared by a highly efficient [2+2] cycloaddition of tetracyanoethene (TCNE) or 7,7,8,8‐tetracyano‐p‐quinodimethane (TCNQ) with meso‐substituted trans‐A2B2‐porphyrins that contained two phenylethynyl groups, followed by a retro‐electrocyclization reaction. Depending on the electronic properties of the arylethynyl groups, the cycloaddition reaction took place exclusively on either one or two ethynyl moieties with high yield. The addition of TCNQ proceeded with complete regioselectivity. The resulting π‐expanded TCBD‐porphyrins had a hypsochromically shifted Soret band and showed unique, broad absorption in the visible region.  相似文献   

2.
1,3‐Bis(azulenylethynyl)azulene derivatives 9–14 have been prepared by palladium‐catalyzed alkynylation of 1‐ethynylazulene 8 with 1,3‐diiodoazulene 1 or 1,3‐diethynylazulene 2 with the corresponding haloazulenes 3–7 under Sonogashira–Hagihara conditions. Bis(alkynes) 9–14 reacted with tetracyanoethylene (TCNE) in a formal [2+2] cycloaddition–retroelectrocyclization reaction to afford the corresponding new bis(tetracyanobutadiene)s (bis(TCBDs)) 15–20 in excellent yields. The redox behavior of bis(TCBD)s 15–20 was examined by using CV and differential pulse voltammetry (DPV), which revealed their reversible multistage reduction properties under the electrochemical conditions. Moreover, a significant color change of alkynes 9–14 and TCBDs 15–20 was observed by visible spectroscopy under the electrochemical reduction conditions.  相似文献   

3.
Ethynylated 2H-cyclohepta[b]furan-2-ones 5-15 have been prepared by Pd-catalyzed alkynylation of 3-iodo-5-isopropyl-2H-cyclohepta[b]furan-2-one (2) with the corresponding ethynylarenes or the reaction of 2-iodothiophene with 3-ethynyl-5-isopropyl-2H-cyclohepta[b]furan-2-one (4) under Sonogashira-Hagihara conditions. Compounds 5-15 reacted with tetracyanoethylene in a formal [2+2] cycloaddition reaction, followed by ring opening of the initially formed [2+2] cycloadducts, cyclobutenes, to afford the corresponding 1,1,4,4-tetracyanobutadienyl (TCBD) chromophores 16-26 in excellent yields. The intramolecular charge-transfer interactions between the 2H-cyclohepta[b]furan-2-one ring and TCBD acceptor moiety were investigated by UV/Vis spectroscopy and theoretical calculations. The redox behavior of the novel TCBD derivatives 16-26 was examined by cyclic voltammetry and differential pulse voltammetry, which revealed multistep electrochemical reduction properties, depending on the number of TCBD units in the molecule. Moreover, a significant color change was observed by UV/Vis spectroscopy under electrochemical reduction conditions.  相似文献   

4.
1‐, 2‐, and 6‐(Ferrocenylethynyl)azulene derivatives 10 – 16 have been prepared by palladium‐catalyzed alkynylation of ethynylferrocene with the corresponding haloazulenes under Sonogashira–Hagihara conditions. Compounds 10 – 16 reacted with tetracyanoethylene (TCNE) in a [2+2] cycloaddition–cycloreversion reaction to afford the corresponding 2‐azulenyl‐1,1,4,4,‐tetracyano‐3‐ferrocenyl‐1,3‐butadiene chromophores 17 – 23 in excellent yields. The redox behavior of the novel azulene chromophores 17 – 23 was examined by using cyclic voltammetry (CV) and differential pulse voltammetry (DPV), which revealed their multistep electrochemical reduction properties. Moreover, a significant color change was observed by visible spectroscopy under electrochemical reduction conditions.  相似文献   

5.
The Hirsch–Bingel reaction of bis{4‐methyl[1,2,3]triazolyl}malonic ester‐bridged bis(permethyl‐β‐cyclodextrin) 1 with C60 has led to the formation of a new fullerene‐bridged bis(permethyl‐β‐cyclodextrin) 2 , which has been comprehensively characterized by NMR spectroscopy, MALDI‐MS, and elemental analysis. Taking advantage of the high affinity between 2 and 5,10,15,20‐tetrakis(4‐sulfonatophenyl)porphyrin ( 3 ) or [5,10,15,20‐tetrakis(4‐sulfonatophenyl)porphinato]zinc(II) ( 4 ), linear supramolecular architectures with a width of about 2 nm and a length ranging from hundreds of nanometers to micron dimension were conveniently constructed and fully investigated by transmission electron microscopy (TEM), atomic force microscopy (AFM), and scanning electron microscopy (SEM). Significantly, the photoinduced electron‐transfer (PET) process between porphyrin and C60 moieties takes place within the 2 ? 3 and 2 ? 4 supramolecular architectures under light irradiation, leading to the highly efficient quenching of the porphyrin fluorescence. The PET process and the charge‐separated state were investigated by means of fluorescence spectroscopy, fluorescence decay, cyclic voltammetry, and nanosecond transient absorption measurements.  相似文献   

6.
《化学:亚洲杂志》2017,12(22):2908-2915
A series of unsymmetrical (D‐A‐D1, D1‐π‐D‐A‐D1, and D1‐A1‐D‐A2‐D1; A=acceptor, D=donor) and symmetrical (D1‐A‐D‐A‐D1) phenothiazines ( 4 b , 4 c , 4 c′ , 5 b , 5 c , 5 d , 5 d′ , 5 e , 5 e′ , 5 f , and 5 f′ ) were designed and synthesized by a [2+2] cycloaddition–electrocyclic ring‐opening reaction of ferrocenyl‐substituted phenothiazines with tetracyanoethylene (TCNE) and 7,7,8,8‐tetracyanoquinodimethane (TCNQ). The photophysical, electrochemical, and computational studies show a strong charge‐transfer (CT) interaction in the phenothiazine derivatives that can be tuned by varying the number of TCNE/TCNQ acceptors. Phenothiazines 4 b , 4 c , 4 c′ , 5 b , 5 c , 5 d , 5 d′ , 5 e , 5 e′ , 5 f and 5 f′ show redshifted absorption in the λ =400 to 900 nm region, as a result of a low HOMO–LUMO gap, which is supported by TD‐DFT calculations. The electrochemical study exhibits reduction waves at low potential due to strong 1,1,4,4‐tetracyanobuta‐1,3‐diene (TCBD) and cyclohexa‐2,5‐diene‐1,4‐ylidene‐expanded TCBD acceptors. The incorporation of cyclohexa‐2,5‐diene‐1,4‐ylidene‐expanded TCBD stabilized the LUMO energy level to a greater extent than TCBD.  相似文献   

7.
1,1′‐Bis(trimethylsilylamino)ferrocene reacts with trimethyl‐ and triethylgallium to give the μ‐[ferrocene‐1,1′‐diyl‐bis(trimethylsilylamido)]tetraalkyldigallanes. These were converted into the 1,3‐bis(trimethylsilyl)‐2‐alkyl‐2‐pyridine‐1,3,2‐diazagalla‐[3]ferrocenophanes, of which the ethyl derivative was characterized by X‐ray structural analysis. Treatment of gallium trichloride with N,N′‐dilithio‐1,1′‐bis(trimethylsilylamino)ferrocene affords μ‐[ferrocene‐1,1′‐diyl‐bis(trimethylsilylamido)]tetrachlorodigallane along with bis(trimethylsilyl)‐2,2‐dichloro‐1‐aza‐3‐azonia‐2‐gallata‐[3]ferrocenophane as a side product, and both were structurally characterized by X‐ray analysis. The solution‐state structures of the new gallium compounds and aspects of their molecular dynamics in solution were studied by NMR spectroscopy (1H, 13C, 29Si NMR).  相似文献   

8.
A series of four phenanthro[4,5‐fgh]quinoxaline‐fused subphthalocyanine derivatives 0 – 3 containing zero, one, two, and three phenanthro[4,5‐fgh]quinoxaline moieties, respectively, were isolated from the mixed cyclotrimerization reaction of 2,9‐di‐tert‐butylphenanthro[4,5‐fgh]quinoxaline‐5,6‐dicarbonitrile with 4,5‐bis(2,6‐diisopropylphenoxy)phthalonitrile and characterized by a series of spectroscopic methods including MALDI‐TOF mass, 1H NMR, electronic absorption, magnetic circular dichroism (MCD), and fluorescence spectroscopy. The molecular structures for the compounds 0 and 2 were clearly revealed on the basis of single‐crystal X‐ray diffraction analysis. Their electrochemical properties were also studied by cyclic voltammetry. In particular, theoretical calculations in combination with the electronic absorption and electrochemical analyses revealed the significant influence of the fused‐phenanthro[4,5‐fgh]quinoxaline units on the electronic structures.  相似文献   

9.
Mono-, bis-, tris-, and tetrakis(1-azulenylethynyl)benzene and mono- and bis(1-azulenylethynyl)thiophene derivatives 5-10 have been prepared by Pd-catalyzed alkynylation of ethynyl arenes with 1-iodoazulene derivative or the 1-ethynylazulene derivative with tetraiodobenzene and iodothiophenes under Sonogashira-Hagihara conditions. Compounds 5-10 reacted with tetracyanoethylene in a [2+2] cycloaddition reaction to afford the corresponding 1,1,4,4,-tetracyano-2-(5-isopropyl-3-methoxycarbonyl-1-azulenyl)-3-butadienyl chromophores 12-16 in excellent yields, except for the reaction of the tetrakis(1-azulenylethynyl)benzene derivative. 1,1,4,4,-Tetracyano-2,3-bis(1-azulenyl)butadiene (17) was also prepared by the similar reaction of bis(1-azulenyl)acetylene (11) with tetracyanoethylene (TCNE). The redox behavior of novel azulene derivatives 12-17 was examined by cyclic voltammetry (CV) and differential pulse voltammetry (DPV), which revealed multistep electrochemical reduction properties. Moreover, a significant color change was observed by visible spectroscopy under electrochemical reduction conditions.  相似文献   

10.
A cycloaddition–retroelectrocyclization reaction between tetracyanoethylene and two zinc phthalocyanines (ZnIIPcs) bearing one or four anilino‐substituted alkynes has been used to install a strong, electron‐accepting tetracyanobuta‐1,3‐diene (TCBD) between the electron‐rich ZnIIPc and aniline moieties. A combination of photophysical, electrochemical, and spectroelectrochemical investigations with the ZnIIPc‐TCBD‐aniline conjugates, which present panchromatic absorptions in the visible region extending all the way to the near infrared, show that the formal replacement of the triple bond by TCBD has a dramatic effect on their ground‐ and excited‐state features. In particular, the formation of extremely intense, ground‐state charge‐transfer interactions between ZnIIPc and the electron‐accepting TCBD were observed, something unprecedented not only in Pc chemistry but also in TCBD‐based porphyrinoid systems.  相似文献   

11.
A cycloaddition–retroelectrocyclization reaction between tetracyanoethylene and two zinc phthalocyanines (ZnIIPcs) bearing one or four anilino‐substituted alkynes has been used to install a strong, electron‐accepting tetracyanobuta‐1,3‐diene (TCBD) between the electron‐rich ZnIIPc and aniline moieties. A combination of photophysical, electrochemical, and spectroelectrochemical investigations with the ZnIIPc‐TCBD‐aniline conjugates, which present panchromatic absorptions in the visible region extending all the way to the near infrared, show that the formal replacement of the triple bond by TCBD has a dramatic effect on their ground‐ and excited‐state features. In particular, the formation of extremely intense, ground‐state charge‐transfer interactions between ZnIIPc and the electron‐accepting TCBD were observed, something unprecedented not only in Pc chemistry but also in TCBD‐based porphyrinoid systems.  相似文献   

12.
The reactions of 1,1′‐bis[Li(trimethylsilyl)amino]ferrocene ( 2a ) with selenium‐ or tellurium tetrahalides gave the 1,1′,3,3′‐tetrakis(trimethylsilyl)‐1,1′,3,3′‐tetraaza‐2‐selene‐ and 2‐tellura‐2,2′‐spirobi[3]ferrocenophanes 5 and 6 , respectively. The analogous reaction with tin dichloride afforded the corresponding 2‐stanna‐2,2′‐spirobi[3]ferrocenophane ( 9 ) rather than the expected stannylene 8 . The reaction of 2,2‐dichloro‐1,3‐bis(trimethylsilyl)‐1,3,2‐diazastanna‐[3]ferrocenophane ( 10 ) with the dilithio reagent 2b also gave the spirotin compound 9 , of which the molecular structure was determined by X‐ray analysis. The formation of the products and their solution‐state structures was deduced from multinuclear magnetic resonance spectroscopic studies (1H, 13C, 15N, 29Si, 77Se, 125Te, 119Sn NMR spectroscopy).  相似文献   

13.
The synthesis and characterization of four new tetracyanobutadiene (TCBD) derivatives ( 1 – 3 and 2′ ) incorporating 2‐ or 2,7‐fluorenyl and diphenylamino moieties are reported. The electroactivity of 1–3 and 2′ was studied by cyclic voltammetry (CV), while the linear optical and (third‐order) nonlinear optical (NLO) properties were investigated by electronic spectroscopy and Z‐scan studies, respectively. All experimental investigations were rationalized by DFT computations, providing an insight into the electronic structure of these derivatives and on their application potential. We show that these derivatives are nonluminescent in solution at ambient temperatures, but become fluorescent in solvent glasses. This finding constitutes an unprecedented observation for TCBD derivatives. Also, we show by Z‐scan studies that these derivatives behave as two‐photon absorbers in the near‐IR range (800–1050 nm). These third‐order NLO properties are discussed and compared with those of their alkynyl precursors ( 4 – 6 ), which have been investigated by two‐photon excited fluorescence (TPEF).  相似文献   

14.
Ferrocene with a β‐cyclodextrin unit bound to one or both cyclopentadienyl rings through the secondary face were conveniently synthesized by regiospecific copper(I)‐catalyzed cycloaddition of 2‐O‐propargyl‐β‐cyclodextrin to azidomethyl or bis(azidomethyl)ferrocene. The supramolecular behavior of the synthesized conjugates in both the absence and presence of bile salts (sodium cholate, deoxycholate, and chenodeoxycholate) was studied by using electrochemical methods (cyclic and differential pulse voltammetry), isothermal titration calorimetry, and NMR spectroscopy (PGSE, CPMG, and 2D‐ROESY). These techniques allowed the determination of stability constants, mode of inclusion, and diffusion coefficients for complexes formed with the neutral and, in some cases, the oxidized states of the ferrocenyl conjugates. It was found that the ferrocenyl conjugate with one β‐cyclodextrin unit forms a redox‐controllable head‐to‐head homodimer in aqueous solution. The ferrocene–bis(β‐cyclodextrin) conjugate is present in two distinguishable forms in aqueous solution, each one having a different half‐wave oxidation potential for the oxidation of the ferrocene. By contrast, only one distinguishable form for the oxidized state of the ferrocene–β‐cyclodextrin conjugate is detectable. The redox‐sensing abilities of the synthesized conjugates towards the bile salts were evaluated based on the observed guest‐induced changes in both the half‐wave potential and the current peak intensity of the electroactive moiety.  相似文献   

15.
2,2‐Bis[4(4‐aminophenoxy)phenyl]phthalein‐3′,5′‐bis(trifluoromethyl)anilide (6FADAP), containing fluorine and phthalimide moieties, was synthesized via the Williamson ether condensation reaction from 1‐chloro‐4‐nitrobenzene and phenolphthalein‐3′,5′‐bis(trifluoromethyl)anilide, which was followed by hydrogenation. Monomers such as 2,2‐bis[4(4‐aminophenoxy)phenyl]phthalein‐anilide containing phthalimide groups and 2,2‐bis[4(4‐aminophenoxy)phenyl]phthalein containing only phthalein moieties were also synthesized for comparison. The monomers were first characterized by Fourier transform infrared (FTIR), 1H NMR, 19F NMR, elemental analysis, and titration and were then used to prepare polyimides with 2,2‐bis(3,4‐dicarboxyphenyl)hexafluoropropane dianhydride. The polyimides were designed to have molecular weights of 20,000 g/mol via off‐stoichiometry and were characterized by FTIR, NMR, gel permeation chromatography (GPC), differential scanning calorimetry, and thermogravimetric analysis. Their solubility, water absorption, dielectric constant, and refractive index were also evaluated. The polyimides prepared with 6FADAP, containing fluorine and phthalimide moieties, had excellent solubility in N‐methylpyrrolidinone, N,N‐dimethylacetamide, tetrahydrofuran, CHCl3, tetrachloroethane, and acetone, and GPC analysis showed a molecular weight of 18,700 g/mol. The polyimides also exhibited a high glass‐transition temperature (290 °C), good thermal stability (~500 °C in air), low water absorption (1.9 wt %), a low dielectric constant (2.81), a low refractive index, and low birefringence (0.0041). © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3361–3374, 2003  相似文献   

16.
New nickel‐based complexes of 1,2‐bis[(2,6‐diisopropylphenyl)imino]acenaphthene (dpp‐bian) with BF4? counterion or halide co‐ligands were synthesized in THF and MeCN. The nickel(I) complexes were obtained by using two approaches: 1) electrochemical reduction of the corresponding nickel(II) precursors; and 2) a chemical comproportionation reaction. The structural features and redox properties of these complexes were investigated by using single‐crystal X‐ray diffraction (XRD), cyclic voltammetry (CV), and electron paramagnetic resonance (EPR) and UV/Vis spectroscopy. The influence of temperature and solvent on the structure of the nickel(I) complexes was studied in detail, and an uncommon reversible solvent‐induced monomer/dimer transformation was observed. In the case of the fluoride complex, the unpaired electron was found to be localized on the dpp‐bian ligand, whereas all of the other nickel complexes contained neutral dpp‐bian moieties.  相似文献   

17.
The synthesis, electrochemical, and photophysical properties of five multicomponent systems featuring a ZnII porphyrin (ZnP) linked to one or two anilino donor‐substituted pentacyano‐ (PCBD) or tetracyanobuta‐1,3‐dienes (TCBD), with and without an interchromophoric bridging spacer (S), are reported: ZnP‐S‐PCBD ( 1 ), ZnP‐S‐TCBD ( 2 ), ZnP‐TCBD ( 3 ), ZnP‐(S‐PCBD)2 ( 4 ), and ZnP‐(S‐TCBD)2 ( 5 ). By means of steady‐state and time‐resolved absorption and luminescence spectroscopy (RT and 77 K), photoinduced intramolecular energy and electron transfer processes are evidenced, upon excitation of the porphyrin unit. In systems equipped with the strongest acceptor PCBD and the spacer ( 1 , 4 ), no evidence of electron transfer is found in toluene, suggesting ZnP→PCBD energy transfer, followed by ultrafast (<10 ps) intrinsic deactivation of the PCBD moiety. In the analogous systems with the weaker acceptor TCBD ( 2 , 5 ), photoinduced electron transfer occurs in benzonitrile, generating a charge‐separated (CS) state lasting 2.3 μs. Such a long lifetime, in light of the high Gibbs free energy for charge recombination (ΔGCR=?1.39 eV), suggests a back‐electron transfer process occurring in the so‐called Marcus inverted region. Notably, in system 3 lacking the interchromophoric spacer, photoinduced charge separation followed by charge recombination occur within 20 ps. This is a consequence of the close vicinity of the donor–acceptor partners and of a virtually activationless electron transfer process. These results indicate that the strongly electron‐accepting cyanobuta‐1,3‐dienes might become promising alternatives to quinone‐, perylenediimide‐, and fullerene‐derived acceptors in multicomponent modules featuring photoinduced electron transfer.  相似文献   

18.
On irradiation (λ=350 nm) in the presence of 1,1‐dimethoxyethene, naphthalene‐1,2‐dionemonoacetals 1 regioselectively afford 1,1,4,4‐tetramethoxycyclobuta[a]naphthalen‐3‐ones 3 . Sequential deprotection of these bis‐acetals first lead to 1,1‐dimethoxycyclobuta[a]naphthalene‐3,4‐diones 4 and then to cyclobuta[a]naphthalene‐1,3,4‐triones 6 , which, in turn, are converted into (3,4‐dihydro‐3,4‐dioxonaphthalen‐2‐yl)acetates 7 by treatment with SiO2/MeOH/air.  相似文献   

19.
Ferrocenyl ionic compounds, consisting of the 5‐ferrocenyltetrazolate anion and a guanidinium or a 1‐alkyl‐3‐methylimidazolium cation, were synthesized and characterized by 1H NMR, 13C NMR, and UV/Vis spectroscopy, as well as elementary analysis. The molecular structures of four compounds were additionally confirmed by single‐crystal X‐ray diffraction. Results of the TG and DSC analyses showed that some compounds display high thermal stability. Cyclic voltammetry investigations suggested that the compounds exhibit redox waves for the ferrocenyl groups and are considered as irreversible redox systems. Migration studies revealed that migration trends of the compounds are much lower than that of 2, 2‐bis(ethylferrocenyl)propane (Catocene), extensively used in composite solid propellants. Their catalytic performances for thermal decomposition of ammonium perchlorate (AP), 1, 3,5‐trinitro‐1, 3,5‐triazacyclohexane (RDX), and 1, 2,5, 7‐tetranitro‐1, 3,5, 7‐tetraazacyclooctane (HMX) were evaluated by DSC and/or TG techniques. Most of the compounds exhibit high catalytic efficiency in the thermal degradation of AP and RDX. Those of the guanidine‐containing compounds 1 – 3 are better, implying that nitrogen‐rich moieties are beneficial to enhancing released heats of some energetic materials. These guanidine salts could be used as ferrocene‐based burning rate catalyst candidates in composite solid propellants.  相似文献   

20.
Crystal Structures and Spectroscopic Properties of 2λ3‐Phospha‐1, 3‐dionates and 1, 3‐Dionates of Calcium ‐ Comparative Studies on the 1, 3‐Diphenyl and 1, 3‐Di(tert‐butyl) Derivatives A hydrogen‐metal exchange between dibenzoylphosphane and calcium carbide in tetrahydrofuran (THF) followed by addition of the ligand 1, 3, 5‐trimethyl‐1, 3, 5‐triazinane (TMTA) furnishes the binuclear complex bis[(tmta‐N, N′, N″)calcium bis(dibenzoylphosphanide)] ( 1a ) co‐crystallizing with benzene. Similarly, reaction of bis(2, 2‐dimethylpropionyl)phosphane with bis(thf‐O)calcium bis[bis(trimethylsilyl)amide] in 1, 2‐dimethoxyethane (DME) gives bis(dme‐O, O′)calcium bis[bis(2, 2‐dimethylpropionyl)phosphanide] ( 1b ) in high yield. The carbon analogues 1, 3‐diphenylpropane‐1, 3‐dione (dibenzoylmethane) or 2, 2, 6, 6‐tetramethylheptane‐3, 5‐dione (dipivaloylmethane) and bis(thf‐O)calcium bis[tris(trimethylsilylmethyl)zincate] in DME afford bis(dme‐O, O′)calcium bis(dibenzoylmethanide) ( 2a ) and the binuclear complex (μ‐dme‐O, O′)bis[(dme‐O, O′)calcium bis(dipivaloylmethanide)] ( 2b ), respectively. Dialkylzinc formed during the metalation reaction shows no reactivity towards the 1, 3‐dionates 2a and 2b . Finally, from the reaction of the unsymmetrically substituted ligand 2‐(methoxycarbonyl)cyclopentanone and bis(thf‐O)calcium bis[bis(trimethylsilyl)amide] in toluene, the trinuclear complex 3 is obtained, co‐crystallizing with THF. The β‐ketoester anion bridges solely via the cyclopentanone unit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号