首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The efficient immobilization and orientation of bilirubin oxidase from Myrothecium verrucaria on multi‐walled carbon nanotube electrodes by using π‐stacked porphyrins as a direct electron‐transfer promoter is reported. By comparing the use of different types of porphyrin, the rational effect of the porphyrin structure on both the immobilization and orientation of the enzyme is demonstrated. The best performances were obtained for protoporphyrin IX, which is the natural precursor of bilirubin. These electrodes exhibit full orientation of the enzyme, as confirmed by the observable non‐catalytic redox system corresponding to the T1 copper center associated with pure Nernstian electrocatalytic behavior with high catalytic currents of almost 5 mA cm?2 at neutral pH.  相似文献   

2.
Unique DNA‐promoted Pd nanocrystals on carbon nanotubes (Pd/DNA–CNTs) are synthesized for the first time, in which through its regularly arranged PO43? groups on the sugar–phosphate backbone, DNA directs the growth of ultrasmall Pd nanocrytals with an average size of 3.4 nm uniformly distributed on CNTs. The Pd/DNA–CNT catalyst shows much more efficient electrocatalytic activity towards oxygen reduction reaction (ORR) with a much more positive onset potential, higher catalytic current density and better stability than other Pd‐based catalysts including Pd nanocrystals on carbon nanotubes (Pd/CNTs) without the use of DNA and commercial Pd/C catalyst. In addition, the Pd/DNA–CNTs catalyst provides high methanol tolerance. The high electrocatalytic performance is mainly contributed by the ultrasmall Pd nanocrystal particles grown directed by DNA to enhance the mass transport rate and to improve the utilization of the Pd catalyst. This work may demonstrate a universal approach to fabricate other superior metal nanocrystal catalysts with DNA promotion for broad applications in energy systems and sensing devices.  相似文献   

3.
Reduced graphene oxide (RGO) was covalently functionalized by the in situ generation and reduction of anthraquinone diazonium salt. Deposition on multi‐wall carbon nanotube (MWCNT) electrodes prevents the aggregation of RGO nanosheets and allows the stable deposition of modified graphene, accompanied with excellent electron transfer properties. Laccases were immobilized on the nanostructured electrode by the interaction between the anthraquinone moiety and the laccase hydrophobic pocket located near the T1 copper center. The MWCNT/f‐RGO electrode exhibits efficient bioelectrocatalytic oxygen reduction, with current densities of up to 0.9 mA cm?2.  相似文献   

4.
Double‐walled carbon nanotubes (DWCNTs) are materials in high demand due to their superior properties. However, it is very challenging to prepare DWCNTs samples of high purity. In particular, the removal of single‐walled carbon nanotubes (SWCNTs) contaminants is a major problem. Here, a procedure for a selective removal of thin‐diameter SWCNTs from their mixtures with DWCNTs by lithium vapor treatment is investigated. The results are evaluated by Raman spectroscopy and in situ Raman spectroelectrochemistry. It is shown that the amount of SWCNTs was reduced by about 35 % after lithium vapor treatment of the studied SWCNTs–DWCNTs mixture.  相似文献   

5.
《Electroanalysis》2005,17(10):857-861
The carbon nanotubes decorated nanoplatinum (CNT‐Pt) were prepared using a chemical reduction method and a novel base electrode was constructed by intercalating CNT‐Pt on the surface of a waxed graphite electrode. The results showed that the nano‐particles of platinum at a waxed graphite electrode exhibits high catalytic activity for the reduction of hydrogen peroxide. The cholesterol oxidase (ChOx), chosen as a model enzyme, was immobilized with sol‐gel on the CNT‐Pt base electrode to construct a biosensor. The current response of the biosensor for cholesterol was very rapid (<20 s). The linear range for cholesterol measurement was 4.0×10?6 mol/L ?1.0×10?4 mol/L with a detection limit of 1.4×10?6 mol/L. The experiments also showed that the ChOx/sol‐gel/CNT‐Pt biosensor was sensitive and stable in detecting cholesterol in serum samples.  相似文献   

6.
7.
8.
以水合肼为还原剂,采用均相还原法制备还原氧化石墨烯-多壁碳纳米管复合材料(rGO-MWCNTs),通过滴涂法将其修饰到玻碳电极(GCE)表面.以此复合材料为载体,采用电化学方法制备了金纳米粒子-还原氧化石墨烯-多壁碳纳米管复合膜修饰电极(AuNPs-rGO-MWCNTs/GCE).通过扫描电镜(SEM)、EDS能谱技术和电化学方法对此电极进行了表征.研究了双酚A在修饰电极上的电化学行为.结果表明,此电极对双酚A的电极过程具有良好的电化学活性,在0.10 mol/L PBS溶液(pH 7.0)中,微分脉冲伏安法测定双酚A的线性范围为5.0 × 10-9~1.0 × 10-7 mol/L和1.0 × 10-7~2.0 × 10-5 mol/L,检出限为1.0 ×10-9 mol/L(S/N=3). 将此电极用于模拟水样和超市购物小票样品中双酚A含量的测定,加标回收率分别为97%~110%和98%~104%.  相似文献   

9.
The influence of dispersing agent used to prepare carbon nanotubes solid‐contact on the performance of all‐solid state ion‐selective electrodes has been evaluated. It is shown that excess of surfactant dispersing agent is leading to deterioration of sensor performance, however, removal of dispersing agent – a typically applied approach – is resulting in substantial change of transducer layer physical properties, which can influence sensor performance. As remedy we propose application of a polymeric dispersing agent – carboxymethylcellulose. Thus obtained ion‐selective electrodes are characterized by high potential readings stability both within day and between days.  相似文献   

10.
Nitrogen‐doped carbon nanosheets (NDCN) with size‐defined mesopores are reported as highly efficient metal‐free catalyst for the oxygen reduction reaction (ORR). A uniform and tunable mesoporous structure of NDCN is prepared using a templating approach. Such controlled mesoporous structure in the NDCN exerts an essential influence on the electrocatalytic performance in both alkaline and acidic media for the ORR. The NDCN catalyst with a pore diameter of 22 nm exhibits a more positive ORR onset potential than that of Pt/C (?0.01 V vs. ?0.02 V) and a high diffusion‐limited current approaching that of Pt/C (5.45 vs. 5.78 mA cm?2) in alkaline medium. Moreover, the catalyst shows pronounced electrocatalytic activity and long‐term stability towards the ORR under acidic conditions. The unique planar mesoporous shells of the NDCN provide exposed highly electroactive and stable catalytic sites, which boost the electrocatalytic activity of metal‐free NDCN catalyst.  相似文献   

11.
A porous interwoven network is synthesized, consisting of ultralong MnO2 nanowires and multi‐walled carbon nanotubes (MWCNTs). Serving as the anode for a lithium‐ion battery, this nanocomposite demonstrates excellent performance due to the synergistic integration of these two 1D materials. Taking advantage of the excellent flexibility and strength of this MnO2–MWCNT network, a full, bendable battery is made that offers high capacity, cycling stability, and low cost.  相似文献   

12.
Hierarchically structured tin oxide/reduced graphene oxide (RGO)/carbon composite powders are prepared through a one‐pot spray pyrolysis process. SnO nanoflakes of several hundred nanometers in diameter and a few nanometers in thickness are uniformly distributed over the micrometer‐sized spherical powder particles. The initial discharge and charge capacities of the tin oxide/RGO/carbon composite powders at a current density of 1000 mA g?1 are 1543 and 1060 mA h g?1, respectively. The discharge capacity of the tin oxide/RGO/carbon composite powders after 175 cycles is 844 mA h g?1, and the capacity retention measured from the second cycle is 80 %. The transformation during cycling of SnO nanoflakes, uniformly dispersed in the tin oxide/RGO/carbon composite powder, into ultrafine nanocrystals results in hollow nanovoids that act as buffers for the large volume changes that occur during cycling, thereby improving the cycling and rate performances of the tin oxide/RGO/carbon composite powders.  相似文献   

13.
The high cost of platinum electrocatalysts for the oxygen reduction reaction (ORR) has hindered the commercialization of fuel cells. An effective support can reduce the usage of Pt and improve the reactivity of Pt through synergistic effects. Herein, the vanadium nitride/graphitic carbon (VN/GC) nanocomposites, which act as an enhanced carrier of Pt nanoparticles (NPs) towards ORR, have been synthesized for the first time. In the synthesis, the VN/GC composite could be obtained by introducing VO3? and [Fe(CN)6]4? ions into the polyacrylic weak‐acid anion‐exchanged resin (PWAR) through an in‐situ anion‐exchanged route, followed by carbonization and a subsequent nitridation process. After loading only 10 % Pt NPs, the resulting Pt‐VN/GC catalyst demonstrates a more positive onset potential (1.01 V), higher mass activity (137.2 mA mg?1), and better cyclic stability (99 % electrochemical active surface area (ECSA) retention after 2000 cycles) towards ORR than the commercial 20 % Pt/C. Importantly, the Pt‐VN/GC catalyst mainly exhibits a 4 e?‐transfer mechanism and a low yield of peroxide species, suggesting its potential application as a low‐cost and highly efficient ORR catalyst in fuel cells.  相似文献   

14.
Porous nitrogen‐rich carbon (POF‐C‐1000) that was synthesized by using a porous organic framework (POF) as a self‐sacrificing host template in a nanocasting process possessed a high degree of graphitization in an ordered structural arrangement with large domains and well‐ordered arrays of carbon sheets. POF‐C‐1000 exhibits favorable electrocatalytic activity for the oxygen‐reduction reaction (ORR) with a clear positive shift of about 40 mV in the onset potential compared to that of a traditional, commercially available Pt/C catalyst. In addition, irrespective of its moderate surface area (785 m2 g?1), POF‐C‐1000 showed a reasonable H2 adsorption of 1.6 wt % (77 K) and a CO2 uptake of 3.5 mmol g?1 (273 K).  相似文献   

15.
A facile and scalable approach for fabricating structural defect‐rich nitrogen‐doped carbon nanotubes (MCSA‐CNTs) through explosive decomposition of melamine–cyanuric acid supramolecular assembly is presented. In comparison to pristine carbon nanotubes, MCSA‐CNT exhibits significantly enhanced catalytic performance in oxidant‐ and steam‐free direct dehydrogenation of ethylbenzene, demonstrating the potential for metal‐free clean and energy‐saving styrene production. This finding also opens a new horizon for preparing highly‐efficient carbocatalysts rich in structural defect sites for diverse transformations.  相似文献   

16.
17.
18.
A high‐yielding exfoliation of graphene at high concentrations in aqueous solutions is critical for both fundamental study and future applications. Herein, we demonstrate the formation of stable aqueous dispersions of pristine graphene by using the surfactant sodium taurodeoxycholate under tip sonication at concentrations of up to 7.1 mg mL?1. TEM showed that about 8 % of the graphene flakes consisted of monolayers and 82 % of the flakes consisted of less than five layers. The dispersions were stable regardless of freezing (?20 °C) or heat treatment (80 °C) for 24 h. The concentration could be significantly improved to about 12 mg mL?1 by vacuum‐evaporation of the dispersions at ambient temperature. The as‐prepared graphene dispersions were readily cast into conductive films and were also processed to prepare Pt/graphene nanocomposites that were used as highly active electrocatalysts for the oxygen‐reduction reaction.  相似文献   

19.
《Electroanalysis》2003,15(10):892-897
A new chemically modified electrode (CME) was fabricated, which was based on the immobilization of multi‐wall carbon nanotubes fuctionalized with carboxylic group (MWNT‐COOH). The results indicated that the CME exhibited efficiently electrocatalytic oxidation for L ‐cysteine and glutathione with relatively high sensitivity, stability and long‐life. Coupled with HPLC, the MWNT‐COOH CME was utilized for amperometric detection of the thiols. The peak currents of L ‐cysteine and glutathione were linear to their concentrations ranging from 3.0×10?7 to 1.0×10?3 mol/L with the calculated detection limit (S/N=3) of 1.2×10?7, 2.2×10?7 mol/L, respectively. The method had been successfully applied to assess the contents of L ‐cysteine and glutathione in rat striatal microdialysates.  相似文献   

20.
Graphene nanosheets are successfully applied as an effective platform for the 2D ordering of metal oxide nanoparticles. Mesoporous 2D aggregates of anatase TiO2 nanoparticles are synthesized by the heat treatment of the uniformly hybridized nanocomposite of layered titanate–reduced graphene oxide (RGO) at elevated temperatures. The precursor layered titanate–RGO nanocomposite is prepared by self‐assembly of anionic RGO nanosheets and cationic TiO2 nanosols. The calcination of the as‐prepared layered titanate–RGO nanocomposite at 500 °C induces a structural and morphological change of layered titanate nanoplates into anatase TiO2 nanoparticles without significant modification of the RGO nanosheet. Increasing the heating temperature to 600 °C gives rise to elimination of the RGO component, leading to the formation of sheetlike porous aggregates of RGO‐free TiO2 nanoparticles. The nanocomposites calcined at 500–700 °C display promising functionality as negative electrodes for lithium ion batteries. Among the present calcined derivatives, the 2D sheet‐shaped aggregate of TiO2 nanoparticles obtained from calcination at 600 °C delivers the greatest specific discharge capacity with good capacity retention for all current density conditions applied. Such superior electrode performance of the nanocomposite calcined at 600 °C is attributable both to the improved stability of the crystal structure and crystal morphology of titania and to the enhancement of Li+ ion transport through the enlargement of mesopores. The present findings clearly demonstrate the usefulness of RGO nanosheets as a platform for 2D‐ordered superstructures of metal oxide nanoparticles with improved electrode performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号