首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
(E)‐α,β‐Unsaturated pyrazoleamides undergo facile dienolization to furnish copper(I)‐(1Z,3Z)‐dienolates as the major in the presence of a copper(I)‐(R)‐DTBM‐SEGPHOS catalyst and Et3N, which react with aldimines to afford syn‐vinylogous products as the major diastereoisomers in high regio‐ and enantioselectivities. In some cases, the diastereoselectivity is low, possibly due to the low ratio of copper(I)‐(1Z,3Z)‐dienolates to copper(I)‐(1Z,3E)‐dienolates. (Z)‐Allylcopper(I) species is proposed as effective intermediates, which may form an equilibrium with copper(I)‐(1Z,3Z)‐dienolates. Interestingly, the present methodology is a nice complement to our previous report, in which (E)‐β,γ‐unsaturated pyrazoleamides were employed as the prenucleophiles in the copper(I)‐catalyzed asymmetric vinylogous Mannich‐Type reaction and anti‐vinylogous products were obtained. In the previous reaction, copper(I)‐ (1Z,3E)‐dienolates were generated through α‐deprotonation, which might form an equilibrium with (E)‐allylcopper(I) species. Therefore, it is realized in the presence of a copper(I) catalyst that (E)‐α,β‐unsaturated pyrazoleamides lead to syn‐products and (E)‐β,γ‐unsaturated pyrazoleamides lead to anti‐products. Finally, by use of (E)‐β,γ‐unsaturated pyrazoleamide, (E)‐α,β‐unsaturated pyrazoleamide, (R)‐DTBM‐SEGPHOS, and (S)‐DTBM‐SEGPHOS, the stereodivergent synthesis of all four stereoisomers is successfully carried out. Then by following a three‐step reaction sequence, all four stereoisomers of N‐Boc‐2‐Ph‐3‐Me‐piperidine are synthesized in good yields, which potentially serve as common structure units in pharmaceutically active compounds.  相似文献   

2.
Treatment of α,β‐unsaturated ketones with an electrophilic site at the γ‐position in the presence of trimethylsilyl cyanide with bis(iodozincio)methane afforded the (Z)‐silyl enol ether of the β‐cyclopropyl substituted ketone in good yields. The reaction proceeds by 1,4‐addition to form an enolate, and its sequential intramolecular nucleophilic attack to an adjacent electrophilic site. The reaction of γ‐ethoxycarbonyl‐α,β‐unsaturated ketone and bis(iodozincio)methane in the presence of trimethylsilyl cyanide afforded 1‐ethoxy‐1‐trimethylsiloxycyclopropane derivatives, which can be regarded as the homoenolate equivalent. Additionally, reaction of the obtained homoenolate equivalents with imines give 1‐(E)‐alkenyl‐2‐(1‐aminoalkyl)alkanols diastereoselectively.  相似文献   

3.
(E)‐α‐Arylsulfanylvinylstannanes react with acyl halides in the presence of a catalytic amount of Pd(PPh3)4 and CuI cocatalyst to give stereoselectively the corresponding (Z)‐α‐arylsulfanyl‐α,β‐unsaturated ketones in good yields. © 2009 Wiley Periodicals, Inc. Heteroatom Chem 20:218–223, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20536  相似文献   

4.
A tandem IBX‐promoted oxidation of primary alcohol to aldehyde and opening of intermediate β,γ‐diolcarbonate aldehyde to (E)‐γ‐hydroxy‐α,β‐enal has been developed. Remarkably, the carbonate opening delivered exclusively (E)‐olefin and no over‐oxidation of γ‐hydroxy was observed. The method developed has been extended to complete the stereoselective total synthesis of both (S)‐ and (R)‐coriolides and d ‐xylo‐ and d ‐arabino‐C‐20 guggultetrols.  相似文献   

5.
New asymmetric conjugate reduction of β,β‐disubstituted α,β‐unsaturated ketones and esters was accomplished with alkoxylhydrosilanes in the presence of chiral rhodium(2,6‐bisoxazolinylphenyl) complexes in high yields and high enantioselectivity. (E)‐4‐Phenyl‐3‐penten‐2‐one and (E)‐4‐phenyl‐4‐isopropyl‐3‐penten‐2‐one were readily reduced at 60 °C in 95 % ee and 98 % ee, respectively, by 1 mol % of catalyst loading. (EtO)2MeSiH proved to be the best hydrogen donor of choice. tert‐Butyl (E)‐β‐methylcinnamate and β‐isopropylcinnamate could also be reduced to the corresponding dihydrocinnamate derivatives up to 98 % ee.  相似文献   

6.
β‐Bromo‐α,β‐unsaturated amides are coupled and cyclized with terminal alkynes in DMF at 110 °C in the presence of a catalytic amount of CuI and amino acid along with a base to give the corresponding (3Z)‐3‐alkylidenepyrrol‐1‐ones in moderate to good yields. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
The α,β‐dehydro­phenyl­alanine residues influence the conformation of the title penta­peptide Boc0–Gly1–ΔZPhe2–Gly3–ΔEPhe4–l ‐Phe5p‐NA ethanol solvate, C42H43N7O9·C2H5OH. The first unsaturated phenyl­alanyl (ΔZPhe2) and the third glycyl (Gly3) residues form a type I β turn, while the second unsaturated phenyl­alanyl (ΔEPhe4) and the last phenyl­alanyl (l ‐Phe5) residues are part of a type II β turn. All the amino acids in the peptide are linked trans to one another. The crystal structure is stabilized by intra‐ and inter­molecular hydrogen bonds.  相似文献   

8.
The full details of the asymmetric epoxidation of α,β‐unsaturated esters catalyzed by yttrium complexes with biaryldiol ligands are described. An yttrium–biphenyldiol catalyst, generated from Y(OiPr)3–biphenyldiol ligand–triphenylarsine oxide (1:1:1), is suitable for the epoxidation of various α,β‐unsaturated esters. With this catalyst, β‐aryl α,β‐unsaturated esters gave high enantioselectivities and good yields (≤99 % ee). The reactivity of this catalyst is good, and the catalyst loading could be decreased to as little as 0.5–2 mol % (the turnover number was up to 116), while high enantiomeric excesses were maintained. For β‐alkyl α,β‐unsaturated esters, an yttrium–binol catalyst, generated from Y(OiPr)3–binol ligand–triphenylphosphine oxide (1:1:2), gave the best enantioselectivities (≤97 % ee). The utility of the epoxidation reaction was demonstrated in an efficient synthesis of (?)‐ragaglitazar, a potential antidiabetes agent.  相似文献   

9.
The asymmetric Michael reaction of nitroalkanes and β,β‐disubstituted α,β‐unsaturated aldehydes was catalyzed by diphenylprolinol silyl ether to afford 1,4‐addition products with an all‐carbon quaternary stereogenic center with excellent enantioselectivity. The reaction is general for β‐substituents such as β‐aryl and β‐alkyl groups, and both nitromethane and nitroethane can be employed. The addition of nitroethane is considered a synthetic equivalent of the asymmetric Michael reaction of ethyl and acetyl substituents by means of radical denitration and Nef reaction, respectively. The short asymmetric synthesis of (S)‐ethosuximide with a quaternary carbon center was accomplished by using the present asymmetric Michael reaction as the key step. The reaction mechanism that involves the E/Z isomerization of α,β‐unsaturated aldehydes, the retro‐Michael reaction, and the different reactivity between nitromethane and nitroethane is discussed.  相似文献   

10.
Treatment of 3‐methylamino‐5‐phenylthiophene with α,β‐unsaturated esters, i.e., methyl acrylate, (E)‐methyl crotonate, diethyl fumarate, diethyl maleate and ethyl propiolate, in tetrahydrofuran for several days at reflux gave 1‐methyl‐3,4‐dihydrothieno[2,3‐e]pyridin‐2‐ones 4 and/or 1‐methylthieno[2,3‐e]pyridin‐2‐ones 5 , depending on the structure of the esters. On the other hand, the same reactions with α,β‐unsaturated nitriles such as acrylonitrile and tetracyanoethene, gave the corresponding thiophenes 7 and 10 bearing 2‐cyanoethyl and 1,2,2‐tricyanoethenyl groups at C‐2, respectively. The reaction with (Z)‐1,2‐dicyanoethene under the same conditions produced the corresponding thiophene 9 bearing the 1,2‐dicyanoethenyl group and 1,2‐dicyano‐5‐methylaminobiphenyl.  相似文献   

11.
The structures of iminium salts formed from diarylprolinol or imidazolidinone derivatives and α,β‐unsaturated aldehydes have been studied by X‐ray powder diffraction (Fig. 1), single‐crystal X‐ray analyses (Table 1), NMR spectroscopy (Tables 2 and 3, Figs. 2–7), and DFT calculations (Helv. Chim. Acta 2009 , 92, 1, 1225, 2010 , 93, 1; Angew. Chem., Int. Ed. 2009 , 48, 3065). Almost all iminium salts of this type exist in solution as diastereoisomeric mixtures with (E)‐ and (Z)‐configured +NC bond geometries. In this study, (E)/(Z) ratios ranging from 88 : 12 up to 98 : 2 (Tables 2 and 3) and (E)/(Z) interconversions (Figs. 2–7) were observed. Furthermore, the relative rates, at which the (E)‐ and (Z)‐isomers are formed from ammonium salts and α,β‐unsaturated aldehydes, were found to differ from the (E)/(Z) equilibrium ratio in at least two cases (Figs. 4 and 5, a, and Fig. 6, a); more (Z)‐isomer is formed kinetically than corresponding to its equilibrium fraction. Given that the enantiomeric product ratios observed in reactions mediated by organocatalysts of this type are often ≥99 : 1, the (E)‐iminium‐ion intermediates are proposed to react with nucleophiles faster than the (Z)‐isomers (Scheme 5 and Fig. 8). Possible reasons for the higher reactivity of (E)‐iminium ions (Figs. 8 and 9) and for the kinetic preference of (Z)‐iminium‐ion formation are discussed (Scheme 4). The results of related density functional theory (DFT) calculations are also reported (Figs. 10–13 and Table 4).  相似文献   

12.
The photoinduced reaction of a mixture of (Z)‐α‐cyano‐β‐bromomethylcinnamide (1) and (E)‐α‐cyano‐β‐bromomethylcinnamide (2) with 1‐benzyl‐1, 4‐dihydronicotinamide produces a mixture of the (E)‐ and (Z)‐ isomers of α‐cyano‐β‐methylcinnamide (3 and 4). Using spin‐trapping technique for monitoring reactive intermediate, it is shown that the reaction proceeds via electron transfer‐debromination‐H abstraction mechanism. The thermal reaction of the same substrate with BNAH at 60°C in the dark gives three products: the (E)‐ and (Z)‐isomers of α‐cyano‐β‐methylcinnamide and a dehydrodimeric product; 2, 7‐dicyano‐3, 6‐diphenylocta‐2, 4, 6‐trien‐1, 8‐dioic amide (7). Based on product analysis, scavenger experiment and cyclic voltammetry, an electron transfer‐debromination‐disproportionation mechanism is proposed.  相似文献   

13.
Kinetically controlled catalytic cross‐metathesis reactions that generate (Z)‐α,β‐unsaturated esters selectively are disclosed. A key finding is that the presence of acetonitrile obviates the need for using excess amounts of a more valuable terminal alkene substrates. On the basis of X‐ray structure and spectroscopic investigations a rationale for the positive impact of acetonitrile is provided. Transformations leading to various E,Z‐dienoates are highly Z‐selective as well. Utility is highlighted by application to stereoselective synthesis of the C1–C12 fragment of biologically active natural product (?)‐laulimalide.  相似文献   

14.
A new and efficient method of the synthesis of tributyl‐β‐keto‐ and tributyl‐β‐alkoxycarbonylalkylidenephosphorane via treatment of tributyl[(trimethylsilyl)‐ methylene]phosphorane with acid chlorides or chloroformate is described. These compounds have been studied less often than their triphenyl analogues (Maryanoff and Reitz, Chem Rev 1989, 89, 870; Taillefer and Cristau, Top Curr Chem, 2003, 229, 41; Appel, Loos, and Mayr, J Am Chem Soc 2009, 131, 704) because trialkyl‐stabilized ylides are very reactive, highly perishable, and more difficult to synthesize. This paper also presents the reaction of in situ generated tributyl‐β‐keto‐ and tributyl‐β‐alkoxycarbonylalkylidenephosphoranes with p‐nitrobenzaldehyde as a model aldehyde to obtain α,β‐unsaturated ketones and esters. All reactions result in Wittig products in a completely E‐stereoselective manner.  相似文献   

15.
The reaction of Ph3P=NLi with various α,β‐unsaturated esters gives access to new N‐(α,β‐unsaturated acyl) phosphinimines, which can undergo intramolecular aza‐Wittig reactions (at 65–110°C) to afford the corresponding nitriles. The structures of all new compounds were established by elementary analyses, IR, 1H‐, 13C‐, and 31P‐NMR spectroscopy. © 1999 John Wiley & Sons, Inc. Heteroatom Chem 10: 49–54, 1999  相似文献   

16.
A combination of regioselective room‐temperature/ambient‐pressure hydroformylation (transition‐metal catalysis) and decarboxylative Knoevenagel reactions (organocatalysis) allowed for the development of an efficient, one‐pot C3 homologation of terminal alkenes to (E)‐α,β‐unsaturated acids and esters, (E)‐β,γ‐unsaturated acids, (E)‐α‐cyano acrylic acids, and α,β‐unsaturated nitriles. All reactions proceed under mild conditions, tolerate a variety of functional groups, and furnish unsaturated carbonyl compounds in good yields and with excellent regio‐ and stereocontrol. Further, an iterative C2 homologation of (E)‐α,β‐unsaturated carboxylic acids is possible through a combination of decarboxylative hydroformylation employing a supramolecular catalyst followed by decarboxylative Knoevenagel condensation with an organocatalyst.  相似文献   

17.
The title triene, C18H10F6, was prepared via the Pd0 coupling reaction of (E)‐(1,2‐di­fluoro‐1,2‐ethenediyl)­bis­(tri­butyl­stan­nane) with (Z)‐β‐iodo‐α,β‐di­fluoro­styrene in N,N′‐dimethylformamide/tetrahydrofuran. The crystal structure shows the product to be the 1E,3E,5E isomer. Due to steric interactions between F atoms, the double bonds are not coplanar. The planes defined by the two terminal double bonds are almost perpendicular.  相似文献   

18.
β‐Bromo‐α,β‐unsaturated ketones are condensed with arylhydrazines to form hydrazones, which are in situ intramolecularly cyclized into 3‐substituted 1‐aryl‐1 H‐pyrazoles under a catalytic system of Pd(OAc)2/1,3‐bis(diphenylhosphino)propane (dppp)/NaOtBu. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Alkyl (Z)‐2‐[(E)‐2‐ethoxycarbonyl‐2‐(2‐pyridinyl)ethenyl]amino‐3‐dimethylaminopropenoates 7 and 8 were prepared from ethyl 2‐pyridinylacetate (1) in two steps. Substitution of the dimethylamino group with alkyl‐, aryl‐, or heteroarylamines afforded the corresponding β‐alkyl‐ 22–24 , β‐aryl‐ 25–35 , and β‐herteroaryl‐amino‐α,β‐didehydro‐α‐amino acid 36 and 37 derivatives, intermediates for further preparation of various heterocyclic systems. The orientation around both double bonds were determined by various nmr techniques.  相似文献   

20.
吴自成宁君  孔繁祚 《中国化学》2003,21(12):1655-1660
Lauryl glycoside of β-D-Glcp-(1→3)-[β-D-Glcp-(1→6)-]α-D-Glcp-(1→3)-β-D-Glcp-(1→3)-[β-D-Glcp-(1→6)-]α-D-Glcp-(1→3)-β-D-Glcp-(1→3)-[β-D-Glcp-(1→6)-]β-D-Glcp was synthesized through 3 3 3 strategy. 3-O-Allyl-2,4,6-tri-O-benzoyl-β-D-glucopyranosyl-(1→3)- -[2, 3, 4, 6-tetra-O-benzoyl-β-D-glucopyranosyl-(1→6)-] 1,2-O-isopropylidene-α-D-glucofuranose was used as the key intermediate which was converted to the corresponding trisaccharide donor and acceptor readily.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号