首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In the title compound, [Sb(CH3)(C6H5)3]BF4, there are four independent cations and anions in the asymmetric unit. The geometry around the Sb atom is distorted tetrahedral, with Sb—C distances in the range 2.077 (4)–2.099 (10) Å and angles at the Sb atom in the range 103.3 (3)–119.0 (4)°.  相似文献   

2.
The title compounds, 1‐chloro‐3,6‐di­methoxy‐2,5‐di­methyl­benzene, (IIIa), and 1‐­chloro‐3,6‐di­methoxy‐2,4‐di­methyl­benzene, (IIIb), both C10H13ClO2, were obtained from 2,5‐ and 2,6‐di­methyl‐1,4‐benzo­quinone, respectively, and are intermediates in the synthesis of ammonium quinone derivatives. The isomers have different substituents around the methoxy groups and crystallize in different space groups. In both mol­ecules, the methoxy groups each have different orientations with respect to the benzene ring. In both cases, one methoxy group lies in the plane of the ring and can participate in conjugation with the aromatic system, while the second is almost perpendicular to the plane of the aromatic ring. The C—O—C bond angles around these substituents are also different: 117.5 (4) and 118.2 (3)° in (IIIa) and (IIIb), respectively, when the methoxy groups lie in the plane of the ring, and 114.7 (3) and 113.6 (3)° in (IIIa) and (IIIb), respectively, when they are out of the plane of the ring.  相似文献   

3.
Diethyl 4‐(2,5‐di­methoxy­phenyl)‐2,6‐di­methyl‐1,4‐di­hydro­pyridine‐3,5‐di­carboxyl­ate, C21H27NO6, (I), diethyl 4‐(3,4‐di­methoxy­phenyl)‐2,6‐di­methyl‐1,4‐di­hydro­pyridine‐3,5‐di­carboxyl­ate, C21H27NO6, (II), and diethyl 2,6‐di­methyl‐4‐(3,4,5‐tri­methoxy­phenyl)‐1,4‐di­hydro­pyridine‐3,5‐di­carboxyl­ate, C22H29NO7, (III), crystallize with hydrogen‐bonding networks involving the H atom bonded to the N atom of the 1,4‐di­hydro­pyridine ring and carbonyl O atoms in (I) and (II). Unusually, (III) shows O atoms of methoxy groups serving as hydrogen‐bond acceptors.  相似文献   

4.
The preparation and X‐ray analysis of the title compound, [Sn2Br4(CH3)4(C5H9NO)], are described. The compound contains two Sn atoms in the asymmetric unit, that complexed by N‐methyl­pyrrolidin‐2‐one being hexacoordinated (a), the other exhibiting pentacoordination (b). The most important features are three different Sn—Br bond lengths at both Sn atoms with the following values: (a) 2.5060 (9), 2.7152 (10) and 3.7118 (10) Å; (b) 2.5084 (10), 2.5279 (9) and 3.5841 (10) Å.  相似文献   

5.
The title compound, poly­[[di­aqua­di­bromo­cadmium‐μ‐(1,3,5,7‐tetra­aza­tri­cyclo[3.3.1.13,7]decane‐N1:N5)‐aqua­cad­mium‐di‐μ‐bromo‐aqua­cadmium‐μ‐(1,3,5,7‐tetra­aza­tri­cyclo[3.3.1.13,7]decane‐N1:N5)‐di‐μ‐bromo] dihydrate], [Cd3­Br6­(C6­H12­N4)2­(H2O)4]·­2H2O, is made up of two‐dimensional neutral rectangular coordination layers. Each rectangular subunit is enclosed by a pair of Cd32‐Br)6(H2O)3 fragments and a pair of (μ2‐hmt)Cd(H2O)2Br22‐hmt) fragments as sides (hmt is hexa­methyl­enetetr­amine). The unique CdII atom in the Cd2Br2 ring in the Cd32‐Br)6(H2O)3 fragment is in a slightly distorted octahedral CdNOBr4 geometry, surrounded by one hmt ligand [2.433 (5) Å], one aqua ligand [2.273 (4) Å] and four Br atoms [2.6409 (11)–3.0270 (14) Å]. The CdII atom in the (μ2‐hmt)Cd(H2O)2Br22‐hmt) fragment lies on an inversion center and is in a highly distorted octahedral CdN2O2Br2 geometry, surrounded by two trans‐related N atoms of two hmt ligands [2.479 (5) Å], two trans‐related aqua ligands [2.294 (4) Å] and two trans‐related Br atoms [2.6755 (12) Å]. Adjacent two‐dimensional coordination sheets are connected into a three‐dimensional network by hydrogen bonds involving lattice water mol­ecules, and the aqua, bromo and hmt ligands belonging to different layers.  相似文献   

6.
9,10‐Di­phenyl‐9,10‐epi­dioxy­anthracene, C26H18O2, (I), was accidentally used in a photo­oxy­genation reaction that produced 9,10‐di­hydro‐10,10‐di­methoxy‐9‐phenyl­anthracen‐9‐ol, C22H20O3, (II). In both compounds, the phenyl rings are approximately orthogonal to the anthracene moiety. The conformation of the anthracene moiety differs as a result of substitution. Intramolecular C—H⃛O interactions in (I) form two approximately planar S(5) rings in each of the two crystallographically independent mol­ecules. The packing of (I) and (II) consists of molecular dimers stabilized by C—H⃛O interactions and of molecular chains stabilized by O—H⃛O interactions, respectively.  相似文献   

7.
The aromatic ring of the cinnamic moiety in N‐benzyl‐2′‐iodo­cinnamanilide, C22H18INO, (I), and N‐benzyl‐2′‐iodo‐4′‐methyl‐2‐phenyl­cinnamanilide, C29H24INO, (II), makes a dihedral angle with the iodo­phenyl ring of 72.1 (2) and 81.0 (2)° in (I) and (II), respectively. In (I), mol­ecules exist as discrete components, while in (II), they form infinite chains along the b axis, through I?O non‐bonded interactions.  相似文献   

8.
The geometry around the Te atom in the anion in C13H22N+·C3H3Cl4OTe? is distorted pseudo‐octahedral with three Cl atoms and the O atom forming the equatorial plane, and the C atom lying opposite the tellurium lone pair. Distances and angles are: Te—O 2.0120 (18), Te—C 2.072 (2), Te—Cl 2.5239 (7), 2.5283 (7) and 2.5577 (7) Å; O—Te—C 81.61 (9), O—Te—Cl 90.69 (6), 90.99 (6) and 168.13 (5), C—Te—Cl 87.13 (8), 86.64 (8) and 86.59 (8), and Cl—Te—Cl 87.02 (2), 90.00 (3) and 173.24 (3)°. The anions are arranged in an infinite zigzag chain parallel to the a axis through a secondary Te?Cl bond [3.8391 (8) Å].  相似文献   

9.
The title compound, cis‐[Pd2Cl3(C7H7S)(C6H15P)2], has bridging chloro and aryl­thiol­ato groups, with the phosphines being trans to the bridging chloro group. The four‐membered metallocyclic Pd2ClS ring is unexpectedly non‐planar, with a dihedral angle of 133.8 (1)° between the PdCl2SP coordination planes. Principal dimensions include Pd—Clt 2.316 (3) and 2.329 (3), Pd—Clb 2.442 (3) and 2.432 (3), Pd—S 2.280 (3) and 2.282 (3), and Pd—P 2.233 (3) and 2.236 (3) Å (where Clt and Clb are terminal and bridging chloro ligands, respectively).  相似文献   

10.
4,5‐Propyl­ene­di­thio‐1,3‐di­thiole‐2‐thione, C6H6S5, (I), crystallizes in the centrosymmetric space group P21/c. The molecular packing is characterized by pairs of S⋯S intermolecular contacts between neighbouring mol­ecules, which may account for the rather high thermal stablity of the crystal. 4,5‐Propyl­ene­di­thio‐1,3‐di­thiol‐2‐one, C6H6OS4, (II), in which an O atom replaces the terminal S atom of (I), crystallizes in the non‐centrosymmetric polar space group Cc. The packing pattern of (II) indicates that the macropolarization direction is along [101]. Although the packing patterns are qualitatively significantly different, the molecular structures of (I) and (II) are similar, each exhibiting a chair conformation.  相似文献   

11.
The cationic part of the homodifunctional amino­phospho­ranyl ligand, C41H41N2P2+·I?, shows interesting features associated with the N—P—C—P—N skeleton. The P—C(H) bond distances [1.696 (3) and 1.697 (3) Å] possess partial double‐bond characteristics. The nature of the P—C(H) and P—N bonds suggests that the positive charge is only distributed around the P—C—P atoms. The structure has near twofold symmetry through the central methyl­ide‐C atom.  相似文献   

12.
The first inorg/organic hybrid complex incorporating the macrocyclic oxamide, of formula [(NiL)2Cu2(μ-NSC)2(NSC)2] (1), (NiL, H2L = 2, 3-dioxo-5,6,14,15-dibenzo-1,4,8,12-tetraazacyclo-pentadeca-7,13-dien), have been synthesized and structurally characterized. The crystals crystallize in the triclinic system, space group P-1, for (1) a = 8.319(3) Å, b = 10.434(4) Å, c = 14.166(5) Å, a = 107.030(5)°, β  =  91.257(5)°, γ = 107.623(5)°. The complex involved both bridging N, S-ligand, and oxamide ligand, C–H?S interactions and NCS → Ni weak coordination interactions making the complex superamolecular.  相似文献   

13.
rac‐5‐Diphenylacetyl‐2,2,4‐trimethyl‐2,3,4,5‐tetrahydro‐1,5‐benzothiazepine, C26H27NOS, (I), and rac‐5‐formyl‐2,2,4‐trimethyl‐2,3,4,5‐tetrahydro‐1,5‐benzothiazepine, C13H17NOS, (II), are both characterized by a planar configuration around the heterocyclic N atom. In contrast with the chair conformation of the parent benzothiazepine, which has no substituents at the heterocyclic N atom, the seven‐membered ring adopts a boat conformation in (I) and a conformation intermediate between boat and twist‐boat in (II). The molecules lack a symmetry plane, indicating distortions from the perfect boat or twist‐boat conformations. The supramolecular architectures are significantly different, depending in (I) on C—H...O interactions and intermolecular S...S contacts, and in (II) on a single aromatic π–π stacking interaction.  相似文献   

14.
The KPb2Cl5 and KPb2Br5 crystals are monoclinic (P21/c) with a microtwinned structure. X-ray analysis of chloride resulted in the parameters a = 8.854(2) Å, b = 7.927(2) Å, c = 12.485(3) Å; β = 90.05(3)°, dcalc = 4.78(1) g/cm3 (STOE STADI4, MoKα, 2θmax = 80°), R1 = 0.0702 for 4094 F ≥ 4 σ(F) reflections. For bromide, a = 9.256(2) Å, b = 8.365(2) Å, c = 13.025(3) Å; β = 90.00(3)°, dcalc = 5.62(1) g/cm3 (Bruker P4, MoKα, 2θmax = 70°), R1 = 0.0692 for 3076 F ≥ 4 (F) reflections.  相似文献   

15.
Polyol Metal Complexes. 35 [1] Diolato Silicate and Germanate Ions from Aqueous Solution Hydrated lithium salts of monoanionic bis(diolato)‐hydroxo complexes of silicon and germanium have been crystallized from alkaline aqueous solutions. The isotypic compounds Li[E(AnErytH–2)2(OH)] · H2O, E = Si ( 1 ) or Ge ( 2 ), AnErytH–2 = anhydroerythritol dianions, were obtained in the form of pseudomeroedric twins, a fact that may be traced back to orthorhombic pseudosymmetry of the monoclinic crystals. With potassium as the counterion, anhydrous crystals of K[Si(AnErytH–2)2(OH)] were grown by evaporating the solvent almost entirely from the aqueous mother liquors.  相似文献   

16.
3‐Deoxy‐3‐fluoro‐d ‐glucopyranose crystallizes from acetone to give a unit cell containing two crystallographically independent molecules. One of these molecules (at site A) is structurally homogeneous and corresponds to 3‐deoxy‐3‐fluoro‐β‐d ‐glucopyranose, C6H11FO5, (I). The second molecule (at site B) is structurally heterogeneous and corresponds to a mixture of (I) and 3‐deoxy‐3‐fluoro‐α‐d ‐glucopyranose, (II); treatment of the diffraction data using partial‐occupancy oxygen at the anomeric center gave a high‐quality packing model with an occupancy ratio of 0.84:0.16 for (II):(I) at site B. The mixture of α‐ and β‐anomers at site B appears to be accommodated in the lattice because hydrogen‐bonding partners are present to hydrogen bond to the anomeric OH group in either an axial or equatorial orientation. Cremer–Pople analysis of (I) and (II) shows the pyranosyl ring of (II) to be slightly more distorted than that of (I) [θ(I) = 3.85 (15)° and θ(II) = 6.35 (16)°], but the general direction of distortion is similar in both structures [ϕ(I) = 67 (2)° (BC1,C4) and ϕ(II) = 26.0 (15)° (C3TBC1); B = boat conformation and TB = twist‐boat conformation]. The exocyclic hydroxymethyl (–CH2OH) conformation is gg (gauchegauche) (H5 anti to O6) in both (I) and (II). Structural comparisons of (I) and (II) to related unsubstituted, deoxy and fluorine‐substituted monosaccharides show that the gluco ring can assume a wide range of distorted chair structures in the crystalline state depending on ring substitution patterns.  相似文献   

17.
The syntheses, X‐ray structural investigations and calculations of the conformational preferences of the carbonyl substituent with respect to the pyran ring have been carried out for the two title compounds, viz. C15H14N2O2, (II), and C20H16N2O2·C2H3N, (III), respectively. In both mol­ecules, the heterocyclic ring adopts a flattened boat conformation. In (II), the carbonyl group and a double bond of the heterocyclic ring are syn, but in (III) they are anti. The carbonyl group forms a short contact with a methyl group H atom in (II). The dihedral angles between the pseudo‐axial phenyl substituent and the flat part of the pyran ring are 92.7 (1) and 93.2 (1)° in (II) and (III), respectively. In the crystal structure of (II), inter­molecular N—H⋯N and N—H⋯O hydrogen bonds link the mol­ecules into a sheet along the (103) plane, while in (III), they link the mol­ecules into ribbons along the a axis.  相似文献   

18.
Ethyl­tri­phenyl­phospho­nium perrhenate, (C20H20P)[ReO4], and (iodo­methyl)­tri­phenyl­phospho­nium perrhenate, (C19H17IP)[ReO4], have been crystallized from 2‐propanol. Both crystal structures consist of phospho­nium cations and perrhenate anions. The cations show the typical propeller‐like geometry. In both crystals, the positions of the nearly tetrahedral anions are stabilized by weak C—H⋯O hydrogen bonds, and for the latter compound, I⋯π interactions also occur.  相似文献   

19.
The improvement of miscibility between toughened Polyamide-6 (PA6) and Styrene-Butadiene Rubber (SBR) was carried out using grafted Glycidyl Methacrylate (SBR-g-GMA). At first, the compatibilizers were prepared using different comonomers, Styrene, and N-vinyl pyrrolidone. Central composited design (CCD) was distinctly applied to study the influence of Glycidyl Methacrylate (GMA) content and comonomer/GMA on the process of compatibilizer preparation. Four models were developed for Gel content and Degree of grafting for both comonomers using Design-expert software. The models were used to calculate the optimum operating conditions and according to the Flory-Huggins parameter and obtained results, SBR-co-NVP-g-GMA was chosen as an effective compatibilizer. Afterward, another CCD was employed to scrutinize the effect of various amounts and grafting degree of compatibilizer on morphology and mechanical properties of PA6/SBR. The Interparticle distance and polydispersity were studied using a Scanning electron microscope (SEM) and also the Izod impact test inspected in order to evaluate the mechanical properties. Finally, modulus and impact strength were optimized to minimize the former and maximize the latter. Also, the most practical terms in the fitted model are statistically specified using F-value. The root causes for the improvement of blend properties were attributed to a chemical reaction between epoxy groups in SBR-g-GMA and both the carboxylic and amine groups in PA6. Impact strength (539.8 J/m) and modulus (2017.2 N/mm2) of the optimum blend indicate an excellent agreement with the amounts predicted by the models.  相似文献   

20.
The crystal structure of the title compound, C20H17NO4S, (I), was determined in order to compare the solution and solid‐state conformations. The mol­ecule was synthesized as a building block for incorporation into oligosaccharides comprised of conformationally restricted furan­ose residues. The furan­ose ring adopts an envelope conformation with the ring O atom displaced above the plane (an OE conformation). The pseudorotational phase angle (P) is 88.6° and the puckering amplitude (τm) is 31.5°. The C2—C1—S—C(Ph) torsion angle is ?163.2 (2)°, which places the aglycone in the exo‐anomeric effect preferred position. The C1—S—C14 bond angle is 99.02 (13)° and the plane of the cresyl moiety is oriented nearly parallel to the four in‐plane atoms of the furan­ose ring envelope. The orientation about the C4—C5 bond is gauchegauche [Bock & Duus (1994). J. Carbohydr. Chem. 13 , 513–543].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号