共查询到20条相似文献,搜索用时 15 毫秒
1.
Jia Liu Xu Zhang Prof. Dr. Dong Wang Dr. Jie‐Yu Wang Prof. Dr. Jian Pei Prof. Peter J. Stang Prof. Dr. Li‐Jun Wan 《化学:亚洲杂志》2011,6(9):2426-2430
Over the past few years, two‐dimensional (2D) nanoporous networks have attracted great interest as templates for the precise localization and confinement of guest building blocks, such as functional molecules or clusters on the solid surfaces. Herein, a series of two‐component molecular networks with a 3‐fold symmetry are constructed on graphite using a truxenone derivative and trimesic acid homologues with carboxylic‐acid‐terminated alkyl chains. The hydrogen‐bonding partner‐recognition‐induced 2D crystallization of alkyl chains makes the flexible alkyl chains act as rigid spacers in the networks to continuously tune the pore size with an accuracy of one carbon atom per step. The two‐component networks were found to accommodate and regulate the distribution and aggregation of guest molecules, such as COR and CuPc. This procedure provides a new pathway for the design and fabrication of molecular nanostructures on solid surfaces. 相似文献
2.
Squeezing,Then Stacking: From Breathing Pores to Three‐Dimensional Ionic Self‐Assembly under Electrochemical Control 下载免费PDF全文
Kang Cui Dr. Kunal S. Mali Dr. Oleksandr Ivasenko Dongqing Wu Dr. Xinliang Feng Dr. Michael Walter Prof. Klaus Müllen Prof. Steven De Feyter Dr. Stijn F. L. Mertens 《Angewandte Chemie (International ed. in English)》2014,53(47):12951-12954
We demonstrate the spontaneous and reversible transition between the two‐ and three‐dimensional self‐assembly of a supramolecular system at the solid–liquid interface under electrochemical conditions, using in situ scanning tunneling microscopy. By tuning the interfacial potential, we can selectively organize our target molecules in an open porous pattern, fill these pores to form an auto‐host–guest structure, or stack the building blocks in a stratified bilayer. Using a simple electrostatic model, we rationalize which charge density is required to enable bilayer formation, and conversely, which molecular size/charge ratio is necessary in the design of new building blocks. Our results may lead to a new class of electrochemically controlled dynamic host–guest systems, artificial receptors, and smart materials. 相似文献
3.
Olivier Guillermet Dr. Eeva Niemi Dr. Samuthira Nagarajan Dr. Xavier Bouju Dr. David Martrou Dr. André Gourdon Dr. Sébastien Gauthier Dr. 《Angewandte Chemie (International ed. in English)》2009,48(11):1970-1973
Buckybowls : The adsorption of penta‐tert‐butylcorannulene, a molecule with fivefold symmetry, on Cu(111), a surface with threefold symmetry, is investigated by scanning tunneling microscopy complemented by structure calculations. The symmetry mismatch is resolved by the formation of threefold‐symmetric subunits consisting of three molecules, which combine with single molecules to form a nearly perfect filling of the plane (see picture).
4.
5.
Takumi Yamaguchi Shohei Tashiro Dr. Masahide Tominaga Dr. Masaki Kawano Dr. Tomoji Ozeki Dr. Makoto Fujita Prof. Dr. 《化学:亚洲杂志》2007,2(4):468-476
Upon complexation with PdII ions, precisely designed strandlike ligands with two tris(3,5‐pyridine) units at both terminals were assembled, with the aid of a linear template molecule, into a discrete tubular complex with a length of 3.5 nm. The high stability and the well‐defined structure of the coordination nanotube were revealed by NMR spectroscopy, cold‐spray ionization MS, and single‐crystal X‐ray analysis. Guest lengths were discriminated by the tube: When the association of strandlike guest molecules, in which two biphenylene units are linked with an (OCH2CH2)n linker, were compared, the tube selectively recognized an appropriate guest whose length was comparable to that of the tube. Tetrathiafulvalene (TTF)‐terminated linear guests were directly oxidized to TTF2+ in the tube, but reduced stepwise via TTF+? outside the tube. 相似文献
6.
Jarugu Narasimha Moorthy Prof. Palani Natarajan 《Chemistry (Weinheim an der Bergstrasse, Germany)》2010,16(26):7796-7802
Sterically‐engineered rigid trigonal molecular modules based on 1,3,5‐tri(4‐hydroxyphenyl)benzenes H1 and H2 undergo O‐H???O hydrogen‐bonded self‐assembly into eight‐fold catenated hexagonal (6,3) and two‐fold interpenetrated undulated square (4,4) networks, respectively. In the presence of [18]crown‐6 as a guest, the triphenol H1 is found to self‐assemble into a honeycomb network with hexagonal voids created between three triphenol building blocks. The guest [18]crown‐6 molecules are found to be nicely nested in hexagonal enclosures. The empty spaces within the crowns can be further filled with neutral (MeOH/water, MeOH/MeNO2) or ionic guest species such as KI/KAcAc to furnish novel multicomponent assemblies, that is, guest ? guest ? host, that typify Russian dolls. In contrast, triphenol H2 is found to yield analogous multicomponent molecular crystals in which the guest crown–K+ acts as a spacers in the hydrogen‐bonded self‐assembly that leads to distorted chicken wire networks. 相似文献
7.
Cyclotrimerization‐Induced Chiral Supramolecular Structures of 4‐Ethynyltriphenylamine on Au(111) Surface 下载免费PDF全文
Feifei Xiang Yan Lu Chao Li Xin Song Xiaoqing Liu Zhongping Wang Juan Liu Dr. Mingdong Dong Prof. Dr. Li Wang 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(37):12978-12983
Cyclotrimerization‐induced chiral supramolecular structures of 4‐ethynyltriphenylamine (ETPA) have been synthesized on the Au(111) surface through alkyne‐based reactions. Whereas the ETPA molecules adsorbed on the Au(111) surface remain inert and form a close‐packed self‐assembled structure at room temperature, the combination of scanning tunneling microscopy observations and theoretical calculations unambiguously reveal that the ETPA molecules cyclotrimerize to form new trimer‐like species—1,3,5‐tris[4‐(diphenylamino)phenyl]benzene (TPAPB)—after annealing at 323 K. Further annealing drives these cyclotrimerized TPAPB molecules to form chiral hexagonal supramolecular structures with an extraordinary self‐healing ability. 相似文献
8.
《Chemistry (Weinheim an der Bergstrasse, Germany)》2005,11(1):298-307
The self‐assembly and characterization of water‐soluble calix[4]arene‐based molecular capsules ( 1?2 ) is reported. The assemblies are the result of ionic interactions between negatively charged calix[4]arenes 1 a and 1 b , functionalized at the upper rim with amino acid moieties, and a positively charged tetraamidiniumcalix[4]arene 2 . The formation of the molecular capsules is studied by 1H NMR spectroscopy, ESI mass spectrometry (ESI‐MS), and isothermal titration calorimetry (ITC). A molecular docking protocol was used to identify potential guest molecules for the self‐assembled capsule 1 a?2 . Experimental guest encapsulation studies indicate that capsule 1 a?2 is an effective host for both charged (N‐methylquinuclidinium cation) and neutral molecules (6‐amino‐2‐methylquinoline) in water. 相似文献
9.
Colm Browne Dr. Tanya K. Ronson Prof. Jonathan R. Nitschke 《Angewandte Chemie (International ed. in English)》2014,53(40):10701-10705
The reaction of 2,6‐diformylpyridine with diverse amines and PdII ions gave rise to a variety of metallosupramolecular species, in which the PdII ion is observed to template a tridentate bis(imino)pyridine ligand. These species included a mononuclear complex as well as [2+2] and [3+3] macrocycles. The addition of pyridine‐containing macrocyclic capping ligands allows for topological complexity to arise, thereby enabling the straightforward preparation of structures that include a [2]catenane, a [2]rotaxane, and a doubly threaded [3]rotaxane. 相似文献
10.
11.
Imine Macrocycle with a Deep Cavity: Guest‐Selected Formation of syn/anti Configuration and Guest‐Controlled Reconfiguration 下载免费PDF全文
Dr. Zhenfeng He Gang Ye Dr. Wei Jiang 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(7):3005-3012
A dynamic covalent bond is one of the ideal linkages for the construction of large and robust organic architectures. In the present article, we show how organic templates can efficiently transform a complex dynamic imine library into a dynamic imine macrocycle. Not only is the constitution well controlled, but also the syn/anti host configuration is efficiently selected and even the orientation of the guest in the asymmetric cavity of the host can be well aligned. This is attributed to the delicate balance and the cooperation of multiple noncovalent interactions between the hosts and the guests. Through sequential additions of three guests in appropriate amounts, controlled structural reconfiguration of dynamic covalent architectures has been achieved for the first time. 相似文献
12.
Vicente G. Jimnez Arthur H. G. David Juan M. Cuerva Victor Blanco Araceli G. Campaa 《Angewandte Chemie (International ed. in English)》2020,59(35):15124-15128
A cyclophane is reported incorporating two units of a heptagon‐containing extended polycyclic aromatic hydrocarbon (PAH) analogue of the hexa‐peri‐hexabenzocoronene (HBC) moiety (hept‐HBC). This cyclophane represents a new class of macrocyclic structures that incorporate for the first time seven‐membered rings within extended PAH frameworks. The saddle curvature of the hept‐HBC macrocycle units induced by the presence of the nonhexagonal ring along with the flexible alkyl linkers generate a cavity with shape complementarity and appropriate size to enable π interactions with fullerenes. Therefore, the cyclophane forms host–guest complexes with C60 and C70 with estimated binding constants of Ka=420±2 m ?1 and Ka=(6.49±0.23)×103 m ?1, respectively. As a result, the macrocycle can selectively bind C70 in the presence of an excess of a mixture of C60 and C70. 相似文献
13.
Zhang HM Yan JW Xie ZX Mao BW Xu X 《Chemistry (Weinheim an der Bergstrasse, Germany)》2006,12(15):4006-4013
Self-assembled monolayers (SAMs) of alkanols (1-C(N)H(2N+1)OH) with varying carbon-chain lengths (N = 10-30) have been systematically studied by means of scanning tunneling microscopy (STM) at the interfaces between alkanol solutions (or liquids) and Au(111) surfaces. The carbon skeletons were found to lie flat on the surfaces. This orientation is consistent with SAMs of alkanols on highly oriented pyrolytic graphite (HOPG) and MoS2 surfaces, and also with alkanes on reconstructed Au(111) surfaces. This result differs from a prior report, which claimed that 1-decanol molecules (N = 10) stood on their ends with the OH polar groups facing the gold substrate. Compared to alkanes, the replacement of one terminal CH3 group with an OH group introduces new bonding features for alkanols owing to the feasibility of forming hydrogen bonds. While SAMs of long-chain alkanols (N > 18) resemble those of alkanes, in which the aliphatic chains make a greater contribution, hydrogen bonding plays a more important role in the formation of SAMs of short-chain alkanols. Thus, in addition to the titled lamellar structure, a herringbone-like structure, seldom seen in SAMs of alkanes, is dominant in alkanol SAMs for values of N < 18. The odd-even effect present in alkane SAMs is also present in alkanol SAMs. Thus, the odd N alkanols (alkanols with an odd number of carbon atoms) adopt perpendicular lamellar structures owing to the favorable interactions of the CH3 terminal groups, similar to the result observed for odd alkanes. In contrast to alkanes on Au(111) surfaces, for which no SAMs on an unreconstructed gold substrate were observed, alkanols are capable of forming SAMs on either the reconstructed or the unreconstructed gold surfaces. Structural models for the packing of alkanol molecules on Au(111) surfaces have been proposed, which successfully explain these experimental observations. 相似文献
14.
Kui Wang Dr. Dong‐Sheng Guo Prof. Dr. Yu Liu 《Chemistry (Weinheim an der Bergstrasse, Germany)》2012,18(28):8758-8764
The complexation‐induced critical aggregation concentrations of 1‐pyrenemethylaminium by mono‐p‐sulfonatocalix[n]arenes and bis‐p‐sulfonatocalix[n]arenes (n=4, 5) were systemically measured by fluorescence spectroscopy. In all cases, the complexation‐induced critical aggregation concentration decreases by about 3 times upon addition of p‐sulfonatocalix[n]arenes. However, the optimal molar ratios for the aggregation of 1‐pyrenemethylaminium by mono‐p‐sulfonatocalix[n]arenes and bis‐p‐sulfonatocalix[n]arenes are distinctly different: For mono‐p‐sulfonatocalix[n]arenes, the optimum mixing ratio for the aggregation of 1‐pyrenemethylaminium is 1:4 mono‐p‐sulfonatocalix[n]arenes/1‐pyrenemethylaminium, whereas only 2.5 molecules of 1‐pyrenemethylaminium can be bound by one cavity of bis‐p‐sulfonatocalix[n]arenes. The intermolecular complexation of mono‐p‐sulfonatocalix[n]arenes and bis‐p‐sulfonatocalix[n]arenes with 1‐pyrenemethylaminium led to the formation of two distinctly different nanoarchitectures, which were shown to be nanoscale vesicle and rod aggregates, respectively, by using dynamic laser scattering, TEM, and SEM. This behavior is also different from the fiber‐like aggregates with lengths of several micrometers that were formed by 1‐pyrenemethylaminium itself above its critical aggregation concentration. Furthermore, the obtained nanoaggregates exhibit benign water solubility, self‐labeled fluorescence, and, more importantly, temperature responsiveness. 相似文献
15.
Torands Revisited: Metal Sequestration and Self‐Assembly of Cyclo‐2,9‐tris‐1,10‐phenanthroline Hexaaza Macrocycles 下载免费PDF全文
Dr. Matthias Georg Schwab Dr. Masayoshi Takase Dr. Alexey Mavrinsky Dr. Wojciech Pisula Prof. Dr. Xinliang Feng Dr. José A. Gámez Prof. Dr. Walter Thiel Dr. Kunal S. Mali Prof. Dr. Steven de Feyter Prof. Dr. Klaus Müllen 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(23):8426-8434
A series of novel toroidal cyclo‐2,9‐tris‐1,10‐phenanthroline macrocycles with an unusual hexaaza cavity are reported. Nickel‐mediated Yamamoto aryl–aryl coupling was found to be a versatile tool for the cyclotrimerization of functionalized 1,10‐phenathroline precursors. Due to the now improved processability, both liquid‐crystalline behavior in the bulk phase and two‐dimensional self‐assembly at the molecular level could be studied, for the first time, for a torand system. The macrocycles exhibited a strong affinity for the complexation of different metal cations, as evidenced by MALDI‐TOF analysis and spectroscopic methods. Experimental results were correlated to an extensive computational study of the cyclo‐2,9‐tris‐1,10‐phenanthroline cavity and its binding mode for metal cations. Due to the combination of several interesting features, toroidal macrocycles may find future applications in the field of ion and charge transport through molecular channels, as well as for chemical sensing and molecular writing in surface‐confined monolayers under STM conditions. 相似文献
16.
N. Kodiah Beyeh Altti Ala‐Korpi Mario Cetina Arto Valkonen Kari Rissanen 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(46):15144-15150
N‐Alkyl ammonium resorcinarene chlorides are stabilized by an intricate array of intra‐ and intermolecular hydrogen bonds that leads to cavitand‐like structures. Depending on the upper‐rim substituents, self‐inclusion was observed in solution and in the solid state. The self‐inclusion can be disrupted at higher temperatures, whereas in the presence of small guests the self‐included dimers spontaneously reorganize to 1:1 host–guest complexes. These host compounds show an interesting ability to bind a series of N‐alkyl acetamide guests through intermolecular hydrogen bonds involving the carbonyl oxygen (C?O) atoms and the amide (NH) groups of the guests, the chloride anions (Cl?) and ammonium (NH2+) cations of the hosts, and also through CH ??? π interactions between the hosts and guests. The self‐included and host–guest complexes were studied by single‐crystal X‐ray diffraction, NMR titration, and mass spectrometry. 相似文献
17.
Hai‐tao Zhang Prof. Dr. Xiao‐dong Fan Prof. Dr. Wei Tian Rong‐tian Suo Zhen Yang Yang Bai Wan‐bin Zhang 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(13):5000-5008
The controlled secondary self‐assembly of amphiphilic molecules in solution is theoretically and practically significant in amphiphilic molecular applications. An amphiphilic β‐cyclodextrin (β‐CD) dimer, namely LA‐(CD)2, has been synthesized, wherein one lithocholic acid (LA) unit is hydrophobic and two β‐CD units are hydrophilic. In an aqueous solution at room temperature, LA‐(CD)2 self‐assembles into spherical micelles without ultrasonication. The primary micelles dissociates and then secondarily form self‐assemblies with branched structures under ultrasonication. The branched aggregates revert to primary micelles at high temperature. The ultrasound‐driven secondary self‐assembly is confirmed by transmission electron microscopy, dynamic light scattering, 1H NMR spectroscopy, and Cu2+‐responsive experiments. Furthermore, 2D NOESY NMR and UV/Vis spectroscopy results indicate that the formation of the primary micelles is driven by hydrophilic–hydrophobic interactions, whereas host–guest interactions promote the formation of the secondary assemblies. Additionally, ultrasonication is shown to be able to effectively destroy the primary hydrophilic–hydrophobic balances while enhancing the host–guest interaction between the LA and β‐CD moieties at room temperature. 相似文献
18.
19.
20.
Inside Cover: Torands Revisited: Metal Sequestration and Self‐Assembly of Cyclo‐2,9‐tris‐1,10‐phenanthroline Hexaaza Macrocycles (Chem. Eur. J. 23/2015) 下载免费PDF全文
Dr. Matthias Georg Schwab Dr. Masayoshi Takase Dr. Alexey Mavrinsky Dr. Wojciech Pisula Prof. Dr. Xinliang Feng Dr. José A. Gámez Prof. Dr. Walter Thiel Dr. Kunal S. Mali Prof. Dr. Steven de Feyter Prof. Dr. Klaus Müllen 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(23):8302-8302