首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metal Complexes of Biologically Important Ligands. CLXVI Metal Complexes with Ferrocenylmethylcysteinate and 1,1′‐Ferrocenylbis‐(methylcysteinate) as Ligands A series of complexes of transition metal ions ( Cr3+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+ ) and of lanthanide ions ( La3+, Nd3+, Gd3+, Dy3+, Lu3+ ) with the anions of ferrocenylmethyl‐L‐cysteine [(C5H5)Fe(C5H4CH(R)SCH2CH(NH3+)CO2?] (L1) and with the dianions of 1,1′‐ferrocenylbis(methyl‐L‐cysteine) [Fe(C5H4CH(R)SCH2CH(NH3+) CO2?)2] (R = H, Me, Ph) (L2) as N,O,S‐donors were prepared. With the monocysteine ferrocene derivative L1 as ligands complexes [MIIL12] or [CrIIIL12]Cl type complexes are formed whereas the bis(cysteine) ligand L2 yields insoluble complexes of type [ML2]n, presumably as coordination polymers. The magnetic moments of [MnIIL2]n, [PrIIIL2]n(OH)n and [DyIIIL2]n(OH)n exhibit “normal” paramagnetism.  相似文献   

2.
The ligands L1 and L2 both form separable dinuclear double‐stranded helicate and mesocate complexes with RuII. In contrast to clinically approved platinates, the helicate isomer of [Ru2( L1 )2]4+ was preferentially cytotoxic to isogenic cells (HCT116 p53?/?), which lack the critical tumour suppressor gene. The mesocate isomer shows the reverse selectivity, with the achiral isomer being preferentially cytotoxic towards HCT116 p53+/+. Other structurally similar RuII‐containing dinuclear complexes showed very little cytotoxic activity. This study demonstrates that alterations in ligand or isomer can have profound effects on cytotoxicity towards cancer cells of different p53 status and suggests that selectivity can be “tuned” to either genotype. In the search for compounds that can target difficult‐to‐treat tumours that lack the p53 tumour suppressor gene, [Ru2( L1 )2]4+ is a promising compound for further development.  相似文献   

3.
[ReNCl2(PPh3)2] and [ReNCl2(PMe2Ph)3] react with the N‐heterocyclic carbene (NHC) 1,3,4‐triphenyl‐1,2,4‐triazol‐5‐ylidene (HLPh) under formation of the stable rhenium(V) nitrido complex [ReNCl(HLPh)(LPh)], which contains one of the two NHC ligands with an additional orthometallation. The rhenium atom in the product is five‐coordinate with a distorted square‐pyramidal coordination sphere. The position trans to the nitrido ligand is blocked by one phenyl ring of the monodentate HLPh ligand. The Re–C(carbene) bond lengths of 2.072(6) and 2.074(6) Å are comparably long and indicate mainly σ‐bonding between the NHC ligand and the electron deficient d2 metal atom. The chloro ligand in [ReNCl(HLPh)(LPh)] is labile and can be replaced by ligands such as pseudohalides or monoanionic thiolates such as diphenyldithiophosphinate (Ph2PS2?) or pyridine‐2‐thiolate (pyS?). X‐ray structure analyses of [ReN(CN)(HLPh)(LPh)] and [ReN(pyS)(HLPh)(LPh)] show that the bonding situation of the NHC ligands (Re–C(carbene) distances between 2.086(3) and 2.130(3) Å) in the product is not significantly influenced by the ligand exchange. The potentially bidentate pyS? ligand is solely coordinated via its thiolato functionality. Hydrogen atoms of each one of the phenyl rings come close to the unoccupied sixth coordination positions of the rhenium atoms in the solid state structures of all complexes. Re–H distances between 2.620 and 2.712Å do not allow to discuss bonding, but with respect to the strong trans labilising influence of “N3?”, weak interactions are indicated.  相似文献   

4.
The phenylimidorhenium(V) complexes [Re(NPh)X3(PPh3)2] (X = Cl, Br) react with the N‐heterocyclic carbene (NHC) 1,3‐diethyl‐4,5‐dimethylimidazole‐2‐ylidene (LEt) under formation of the stable rhenium(V) complex cations [Re(NPh)X(LEt)4]2+ (X = Cl, Br), which can be isolated as their chloride or [PF6]? salts. The compounds are remarkably stable against air, moisture and ligand exchange. The hydroxo species [Re(NPh)(OH)(LEt)4]2+ is formed when moist solvents are used during the synthesis. The rhenium atoms in all three complexes are coordinated in a distorted octahedral fashion with the four NHC ligands in equatorial planes of the molecules. The Re–C(carbene) bond lengths between 2.171(8) and 2.221(3) Å indicate mainly σ‐bonding between the NHC ligand and the electron deficient d2 metal atoms. Attempts to prepare analogous phenylimido complexes from [Re(NPh)Cl3(PPh3)2] and 1,3‐diisopropyl‐4,5‐dimethylimidazole‐2‐ylidene (Li?Pr) led to a cleavage of the rhenium‐nitrogen multiple bond and the formation of the dioxo complex [ReO2(Li?Pr)4]+.  相似文献   

5.
Cations derived by protonation of the ligand title compound (L1) have been structurally characterized in their di‐ and tetra‐ protonated forms in the salts [H2L1][ClO4]2·2H2O and [H4L1][ZnCl4]2·4H2O. In both structures, one half of the formula unit comprises the asymmetric unit of the structure, the macrocycle being centrosymmetric, with the two macrocycles adopting similar conformations. In both salts, a pair of diagonally opposed macrocyclic secondary amine groups are protonated; in the [H4L1]4+ salt, the additional pair of protons are accommodated on the exocyclic pendant amine groups. The dispositions of the pendent amines differ between the two structures, being ‘equatorial’ with respect to the macrocyclic ring in the [H2L1]2+ salt, and ‘axial’ in the [H4L1]4+ salt. In other structurally characterized compounds containing [H4L1]4+ the equatorial disposition was found in the ferricyanide adduct, while in the tetraperchlorate salt the axial disposition was identified. The differences in disposition of the exocyclic groups are ascribed to the extensive H‐bonding in the lattices.  相似文献   

6.
Five novel coordination polymers, [(Cu(L1)2OH) · Cl · 3H2O] ( 1 ) [L1 = bis(N‐imidazolyl)methane], [Cd(L1)2(NCS)2] ( 2 ), [Zn(L1)2(NCS)2] ( 3 ), [Cu(L1)2(NO3)2] ( 4 ), and [Cu(L2)1.5(NCS)2] ( 5 ) [L2 = 1,4‐bis(N‐imidazolyl)butane] were obtained from self‐assembly of the corresponding metal salts with flexible ligands and their structures were fully characterized by X‐ray diffraction (XRD) analysis, Fourier Transform Infrared (FT‐IR) spectroscopy, elemental analysis and thermogravimetric (TGA) measurements. X‐ray diffraction analyses revealed that complexes 1 , 2 , 3 , and 4 exhibit 1D double‐stranded chain structures, which result from doubly bridged [CuOH], [M(NCS)2] (M = Cd, Zn), and [Cu(NO3)2] units, respectively. The polymeric copper complex 5 displays 1D ladder structure., These complexes, with the exception of complex 1 , are stable up to 300 °C.  相似文献   

7.
The use of stimuli to induce reversible structural transformations in metallosupramolecular systems is of keen interest to chemists seeking to mimic the way that Nature effects conformational changes in biological machinery. While a wide array of stimuli have been deployed towards this end, stoichiometric changes have only been explored in a handful of examples. Furthermore, switching has generally been between only two distinct states. Here we use a simple 2‐(1‐(pyridine‐4‐methyl)‐1H‐1,2,3‐triazol‐4‐yl)pyridine “click” ligand in combination with PdII in various stoichiometries and concentrations to quantitatively access and cycle between three distinct species: a [PdL2]2+ monomer, a [Pd2L2]4+ dimer, and a [Pd9L12]18+ cage.  相似文献   

8.
The sterically demanding β‐diketiminate ligand Ldmp [Ldmp = HC{(CMe)N(dmp)}2, dmp = C6H3‐2,6‐Me2] was used to stabilize various gallium complexes in the formal oxidation states +II and +III. The reaction of in situ generated [LdmpLi] with gallium chloride affords [LdmpGaCl2] ( 1 ), which was used as starting complex to synthesize a variety of gallium(III) compounds [LdmpGaX2] [X = F ( 2 ), I ( 3 ), H ( 4 ), and Me ( 5 )]. Synthesis of the dinuclear complex [LdmpGaI]2 ( 6 ), with gallium in the formal oxidation state +II was accomplished by converting “GaI” with in situ generated [LdmpLi] in toluene. All compounds were characterized by elemental analyses, NMR spectroscopy, LIFDI‐TOF‐MS, and single‐crystal X‐ray diffraction. Additionally DFT calculations were performed for analysis of the bonding in 6 .  相似文献   

9.
Chiral nanosized confinements play a major role for enantioselective recognition and reaction control in biological systems. Supramolecular self‐assembly gives access to artificial mimics with tunable sizes and properties. Herein, a new family of [Pd2L4] coordination cages based on a chiral [6]helicene backbone is introduced. A racemic mixture of the bis‐monodentate pyridyl ligand L1 selectively assembles with PdII cations under chiral self‐discrimination to an achiral meso cage, cis‐[Pd2 L1P 2 L1M 2]. Enantiopure L1 forms homochiral cages [Pd2 L1P/M 4]. A longer derivative L2 forms chiral cages [Pd2 L2P/M 4] with larger cavities, which bind optical isomers of chiral guests with different affinities. Owing to its distinct chiroptical properties, this cage can distinguish non‐chiral guests of different lengths, as they were found to squeeze or elongate the cavity under modulation of the helical pitch of the helicenes. The CD spectroscopic results were supported by ion mobility mass spectrometry.  相似文献   

10.
Methoxy‐modified β‐diimines HL 1 and HL 2 reacted with Y(CH2SiMe3)3(THF)2 to afford the corresponding bis(alkyl)s [L1Y(CH2SiMe3)2] ( 1 ) and [L2Y(CH2SiMe3)2] ( 2 ), respectively. Amination of 1 with 2,6‐diisopropyl aniline gave the bis(amido) counterpart [L1Y{N(H)(2,6‐iPr2? C6H3)}2] ( 3 ), selectively. Treatment of Y(CH2SiMe3)3(THF)2 with methoxy‐modified anilido imine HL 3 yielded bis(alkyl) complex [L3Y(CH2SiMe3)2(THF)] ( 4 ) that sequentially reacted with 2,6‐diisopropyl aniline to give the bis(amido) analogue [L3Y{N(H)(2,6‐iPr2? C6H3)}2] ( 5 ). Complex 2 was “base‐free” monomer, in which the tetradentate β‐diiminato ligand was meridional with the two alkyl species locating above and below it, generating tetragonal bipyramidal core about the metal center. Complex 3 was asymmetric monomer containing trigonal bipyramidal core with trans‐arrangement of the amido ligands. In contrast, the two cis‐located alkyl species in complex 4 were endo and exo towards the O,N,N tridentate anilido‐imido moiety. The bis(amido) complex 5 was confirmed to be structural analogue to 4 albeit without THF coordination. All these yttrium complexes are highly active initiators for the ring‐opening polymerization of L ‐LA at room temperature. The catalytic activity of the complexes and their “single‐site” or “double‐site” behavior depend on the ligand framework and the geometry of the alkyl (amido) species in the corresponding complexes. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5662–5672, 2007  相似文献   

11.
[CrIII8MII6]12+ (MII=Cu, Co) coordination cubes were constructed from a simple [CrIIIL3] metalloligand and a “naked” MII salt. The flexibility in the design proffers the potential to tune the physical properties, as all the constituent parts of the cage can be changed without structural alteration. Computational techniques (known in theoretical nuclear physics as statistical spectroscopy) in tandem with EPR spectroscopy are used to interpret the magnetic behavior.  相似文献   

12.
In the title coordination polymer, [Zn2(C14H8N2O4)2(C12H10N2)]n, the asymmetric unit contains one ZnII cation, two halves of 2,2′‐(diazene‐1,2‐diyl)dibenzoate anions (denoted L2−) and half of a 1,2‐bis(pyridin‐4‐yl)ethene ligand (denoted bpe). The three ligands lie across crystallographic inversion centres. Each ZnII centre is four‐coordinated by three O atoms of bridging carboxylate groups from three L2− ligands and by one N atom from a bpe ligand, forming a tetrahedral coordination geometry. Two ZnII atoms are bridged by two carboxylate groups of L2− ligands, generating a [Zn2(CO2)2] ring. Each loop serves as a fourfold node, which links its four equivalent nodes via the sharing of four L2− ligands to form a two‐dimensional [Zn2L4]n net. These nets are separated by bpe ligands acting as spacers, producing a three‐dimensional framework with a 4664 topology. Powder X‐ray diffraction and solid‐state photoluminescence were also measured.  相似文献   

13.
《化学:亚洲杂志》2018,13(19):2805-2811
The aqueous self‐assembly of the flexible ligand L bis(1H‐benz[d]imidazole‐1‐yl)methane and cis‐coordinated PtII precursors [(en)Pt2+, (tmeda)Pt2+, en=ethylenediamine, tmeda=N,N,N′,N′‐tetramethylethylenediamine)] led to the formation of the metallacalixarenes with full alternative conformations (e.g., two novel water‐soluble metallacalixarenes [M2L2]4+ and [M3L3]6+ with D2 and D3 symmetry, respectively). Their molecular structures were determined by single crystal X‐ray analyses in solid state. The two metallacalixarenes present different cavity sizes and the [M3L3]6+ cavity encapsulates one NO3. NOESY NMR revealed that the conformational interconversion between 1,3‐alternate conformer in methanol and cone conformer in DMSO was tuned via the synergistic effect between solvent and anion. Guest encapsulation is also discussed.  相似文献   

14.
This article describes the developments in coordination self‐assembly based on flexible tripodal ligands with different metal species. Various finite metallocages such as M3L2, M6L8, M6L4, M4L4 and different catenanes based on discrete metallocages constructed from flexible tripodal ligands with suitable metal species are presented here. Many M3L2 metallocages based on ligands L1–L12 and different two‐coordinated metal species have been prepared, in which various Ag(I) salts and other metal species that have been protected by suitable groups, such as Zn(OAc)2, ZnBr2, and PdBr2, have been used as effective acceptors. All of the M6L8‐type metallocages are constructed from ligands L2 or L12–L20 and different four‐coordinated metal species, such as various palladium(II) salts or NiCl2, and have similar topological structures. Only a few discrete M6L4‐type metallocages, based on ligands L21–L24, have been reported, using different strategies such as protecting groups and steric hindrance. All of the M4L4‐type cages have similar topological structures and are constructed from ligands L25–L29 with multiple donor sites. More intriguing interlocking ensembles constructed from discrete metallocages are also described here in detail, namely, three [2]catenanes based on ligands L30–L32 and four polycatenanes based on ligands L33–L34.  相似文献   

15.
2,5‐Bis[4‐methyl‐3‐(pyridin‐3‐yl)phenyl]‐1,3,4‐oxadiazole (L), C26H20N4O, forms one‐dimensional chains via two types of intermolecular π–π interactions. In catena‐poly[[dichloridozinc(II)]‐μ‐2,5‐bis[4‐methyl‐3‐(pyridin‐3‐yl)phenyl]‐1,3,4‐oxadiazole], [ZnCl2(C26H20N4O)]n, synthesized by the combination of L with ZnCl2, the ZnII centres are coordinated by two Cl atoms and two N atoms from two L ligands. [ZnCl2L]n forms one‐dimensional P (plus) and M (minus) helical chains, where the L ligand has different directions of twist. The helical chains stack together via interchain π–π and C—H...π interactions.  相似文献   

16.
Silicon‐mediated fluoride abstraction is demonstrated as a means of generating the first fluorido‐cyanido transition metal complexes. This new synthetic approach is exemplified by the synthesis and characterization of the heteroleptic complexes, trans‐[MIVF4(CN)2]2? (M=Re, Os), obtained from their homoleptic [MIVF6]2? parents. As shown by combined high‐field electron paramagnetic resonance spectroscopy and magnetization measurements, the partial substitution of fluoride by cyanide ligands leads to a marked increase in the magnetic anisotropy of trans‐[ReF4(CN)2]2? as compared to [ReF6]2?, reflecting the severe departure from an ideal octahedral (Oh point group) ligand field. This methodology paves the way toward the realization of new heteroleptic transition metal complexes that may be used as highly anisotropic building‐blocks for the design of high‐performance molecule‐based magnetic materials.  相似文献   

17.
Metal Complexes with Tetrapyrrole Ligands. LXXVI. New Water‐soluble Osmium Complexes of 5,10,15,20‐Tetrakis(4‐sulfonatophenyl)porphyrin‐Anion The new symmetrical osmium(II) porphyrinates [Os(tpps4)L2]4– ( 1 b – g ) are formed from [OsO2(tpps4)]4– ( 1 a ) by reduction in presence of the ligands L. 1 e – g react with 1‐methylimidazole to yield the unsymmetrical complexes [Os(tpps4)LL′]4– ( 1 h – j ). Except for 1 g – h the osmium(II) porphyrinates are not inert in presence of air and are oxidized to the osmium(III) porphyrinates [Os(tpps4)L2]3– ( 2 b – f ) and [Os(tpps4)LL′]3– ( 2 i – j ). These anions are deposited as sodium salts.  相似文献   

18.
Four metal benzylalkoxides, [L2M2(μ‐OBn)2] (M = Mg or Zn), based on NNO‐tridentate ketiminate ligands are synthesized and characterized. X‐ray crystal structural studies of [(L1)2Mg2(μ‐OBn)2] ( 1a ) and [(L1)2Zn2(μ‐OBn)2] ( 1b ) (L1‐H = (Z)‐4‐((2‐(dimethylamino)ethylamino)(phenyl)methylene)‐3‐methyl‐1‐phenyl‐pyrazol‐5‐one) reveal that both complexes 1a and 1b are dinuclear species whereas the geometry around the metal center is penta‐coordinated bridging through the benzylalkoxy oxygen atoms in the solid structure. The activities and stereoselectivities of these four complexes toward the ring‐opening polymerization of L ‐lactide and rac‐lactide are investigated. Polymerization of L ‐lactide initiated by these four metal benzyloxides proceeds rapidly with good molecular weight control and yields polymer with a very narrow molecular weight distribution. The kinetic studies for the polymerization of L ‐lactide with compound 1a show first order in both compound 1a and lactide concentrations with the polymerization rate constant, k, of 6.94 M/min. Besides, experimental results demonstrate that among these metal benzylalkoxides, complex 1a exhibits the highest stereoselectivity with a Pr up to 87% and complex 1b possesses the highest activity indicating that the terminal group of NNO‐tridentate ketimine ligands exerts a significant influence on both the reactivity and stereoselectivity of these complexes. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2318–2329, 2009  相似文献   

19.
The pendant‐armed ligands L1 and L2 were synthesized by N‐alkylation of the two secondary aminic groups of the oxaazamacrocyclic precursor L with o‐nitrobenzylbromide (L1) or p‐nitrobenzylbromide (L2). Metal complexes of L1 and L2 have been synthesized and characterized by microanalysis, MS‐FAB, conductivity measurements, IR, UV‐Vis, 1H and 13C NMR spectroscopy and magnetic studies. Crystal structures of ligands L1 and L2, as well as complexes [CdL1(NO3)2]·2CH3CN and [Ag2Br(L2)2](ClO4)·2CH3CN have been determined by single crystal X‐ray crystallography.  相似文献   

20.
Reactions of the oxorhenium(V) complexes [ReOX3(PPh3)2] (X = Cl, Br) with the N‐heterocyclic carbene (NHC) 1,3,4‐triphenyl‐1,2,4‐triazol‐5‐ylidene (LPh) under mild conditions and in the presence of MeOH or water give [ReOX2(Y)(PPh3)(LPh)] complexes (X = Cl, Br; Y = OMe, OH). Attempted reactions of the carbene precursor 5‐methoxy‐1,3,4‐triphenyl‐4,5‐dihydro‐1H‐1,2,4‐triazole ( 1 ) with [ReOCl3(PPh3)2] or [NBu4][ReOCl4] in boiling xylene resulted in protonation of the intermediately formed carbene and decomposition products such as [HLPh][ReOCl4(OPPh3)], [HLPh][ReOCl4(OH2)] or [HLPh][ReO4] were isolated. The neutral [ReOX2(Y)(PPh3)(HLPh)] complexes are purple, airstable solids. The bulky NHC ligands coordinate monodentate and in cis‐position to PPh3. The relatively long Re–C bond lengths of approximate 2.1Å indicate metal‐carbon single bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号