首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To create a design guideline for efficient third‐order nonlinear optical (NLO) molecules, the chain‐length (n) dependences of the diradical character y and the longitudinal second hyperpolarizability γ of quinoidal oligothiophenes (QTs), from monomers to octamers, involving thiophene‐S,S‐dioxide rings are investigated by using the density functional theory method. It turns out that the diradical character of the modified QTs is reduced as compared to those of the pristine QTs. By introducing an appropriate number of oxidized rings into the QT framework, intermediate y values can be achieved even in the systems with large values of n, in which the pristine QTs are predicted to have pure diradical character. Such intermediate diradical oligomers are shown to exhibit enhanced γ values as compared to the pristine QTs with the same value for n. From the calculation results, the introduction of the optimal number of thiophene‐S,S‐dioxide rings is predicted to be an efficient chemical modification for optimizing the third‐order NLO properties of open‐shell QTs through tuning the diradical characters.  相似文献   

2.
To reveal new structure–property relationships in the nonlinear optical (NLO) properties of fullerenes that are associated with their open‐shell character, we investigated the interplay between the diradical character (yi) and second hyperpolarizability (longitudinal component, γzzzz) in several fullerenes, including C20 , C26 , C30 , C36 , C40 , C42 , C48 , C60 , and C70 , by using the broken‐symmetry density functional theory (DFT; LC‐UBLYP (μ=0.33)/6‐31G*//UB3LYP/6‐31G*). We found that the large differences between the geometry and topology of fullerenes have a significant effect on the diradical character of each fullerene. On the basis of their different diradical character, these fullerenes were categorized into three groups, that is, closed‐shell (yi=0), intermediate open‐shell (0<yi<1), and almost pure open‐shell compounds (yi?1), which originated from their diverse topological features, as explained by odd‐electron‐density and spin‐density diagrams. For example, we found that closed‐shell fullerenes include C20 , C60 , and C70 , whereas fullerenes C26 and C36 and C30 , C40 , C42 , and C48 are pure and intermediate open‐shell compounds, respectively. Interestingly, the γzzzz enhancement ratios between C30 / C36 and C40 / C60 are 4.42 and 11.75, respectively, regardless of the smaller π‐conjugation size in C30 and C40 than in C36 and C60 . Larger γzzzz values were obtained for other fullerenes that had intermediate diradical character, in accordance with our previous valence configuration interaction (VCI) results for the two‐site diradical model. The γzzzz density analysis shows that the large positive contributions originate from the large γzzzz density distributions on the right‐ and left‐extended edges of the fullerenes, between which significant spin polarizations (related to their intermediate diradical character) appear within the spin‐unrestricted DFT level of theory.  相似文献   

3.
A tetracyano quinoidal tetrathiophene, having a central bi(thieno[3,4‐c]pyrrole‐4,6‐dione) acceptor, has been studied. The recovered aromaticity of the thiophenes produces a diradical species with cross‐conjugation between the inter‐dicyano and inter‐dione acceptor paths. A diradical character of y0=0.61 and a singlet–triplet gap of ?2.76 kcal mol?1 were determined. Competition between the two cross‐conjugated paths enhances the disjointed character of the SOMOs and results in the confinement of the diradical to the molecular center, enabling a thermodynamic diradical stabilization featuring a half‐life of 262 hours. Cross‐conjugation effects have been also addressed in the anionic species (up to a radical trianion).  相似文献   

4.
A rapid new approach to produce biologically relevant bisindoles, namely indolyltetrahydrocarbazoles and indolo[3,2‐b]carbazoles, has been developed, based on the Ga(OTf)3‐catalyzed [3+3] cyclodimerization of indole‐derived donor–acceptor cyclopropanes. Chemoselectivity of the process depends on the location of the three‐membered ring at the indole core.  相似文献   

5.
The title compound, C17H14O4, is an unprecedented new synthetic isoaurone‐type enol ether that has the E configuration. The planar furanone ring is fused to a methoxy­benzene ring system, with an interplanar angle of 175.7 (1)°. Due to this ring fusion, the six‐membered ring has a significant amount of ring strain, as shown by the internal ring angle range of 115.8 (1)–124.7 (1)°, whereas the vinylic phenyl ring has internal angles between 119.7 (1) and 120.2 (1)°. The mol­ecules form infinite hydrogen‐bonding layers along the b direction of the form C—H?O, where the keto O atom acts as a bifurcated acceptor. These layers are connected along the c direction by another hydrogen bond with a methoxy H atom as donor. In addition to this connection, the layers are stacked via centres of symmetry by a pair of symmetry‐related benzo­furan­one ring systems.  相似文献   

6.
A broad series of more than 20 acceptor‐substituted squaraines was synthesized that feature different acceptor functionalities at the central squaraine four‐membered ring. The influence of these acceptor units on the reactivity of semisquaraine precursors and stability of the respective squaraines were explored. Thereby the dicyanovinyl group was found to be the most versatile acceptor group that enabled various modifications at the donor moiety of the squaraine scaffold, leading to an extended series of dicyanovinyl‐functionalized squaraines. The variation of donor units afforded a set of NIR fluorophores that cover a wavelength region from the visible at about 650 nm far into the NIR up to 920 nm with fluorescence quantum yields between 0.93 and 0.11 and outstanding optical brightness. This excellent optical property is related to a rigid molecular scaffold that is fixed in an all‐cis configuration by the additional dicyanovinyl acceptor unit. The change of the molecular symmetry from C2h to C2v upon functionalization of the squaraine core with dicyanovinyl acceptor group has been confirmed in solution by electro‐optical absorption (EOA) spectroscopy, revealing permanent ground‐state dipole moments μg in the range between 4.3 and 6.4 D. These dipole moments direct an antiparallel packing of the molecules in the solid state according to single‐crystal X‐ray analyses achieved for four dicyanovinyl‐functionalized squaraines. The structural properties, the EOA results, as well as the band shapes of the optical spectra indicate that these polymethine dyes are cyanine‐type chromophores. It is worth noting that the orientation of the dipole moment vectors is orthogonal to the orientation of the transition dipole moment vectors, which is an uncommon but characteristic feature of this rather novel class of polymethine dyes. With regard to applications of these dyes in organic solar cells, their redox properties were also studied by cyclic voltammetry.  相似文献   

7.
8.
Thorough investigation of key intermediates, such as long‐lived singlet diradicals, is essential to understand the homolytic bond cleavage reactions. In this study, we evaluate the effect of bulky substituents at the meta‐position of the phenyl ring on the bond formation process in singlet 2,2‐diethoxy‐1,3‐diarylcyclopentane‐1,3‐diyls. The bulky groups have significant influence on the diradical lifetime, as such, when the triisopropylphenyl group was used, the lifetime was 45 times longer than that of the parent diradical in benzene at 293 K.  相似文献   

9.
The transformation of trichalcogenasumanene buckybowls into donor–acceptor‐type [5‐6‐7] fused polyheterocycles is disclosed. The strategy involves a highly efficient ring‐opening of the flanking benzene upon oxidation at room temperature, and facile ring closure by functional‐group transformation. Crystallographic studies indicate that the resulting [5‐6‐7] fused polyheterocycles possess a planar conformation owing to the release of ring strain by expansion of one of the six‐membered flanking rings to the seven‐membered one. Additionally, the [5‐6‐7] fused polyheterocycles bear electron‐withdrawing groups, which reduce the HOMO–LUMO energy gap, and display broad absorption bands extending to λ=590 nm. Consequently, these compounds show strong red emission with fluorescence quantum yields of up to 38 %.  相似文献   

10.
meta‐ and para‐Phenylenediamine‐fused nickel(II) porphyrin dimers were synthesized by SNAr reaction of meso,β,β‐trichloro nickel(II) porphyrin with meta‐ and para‐phenylenediamines and subsequent Pd‐catalyzed intramolecular C?H arylation. Their tetrachlorinated dication diradicals are very stable, allowing SQUID magnetometry and revealing clear open‐shell characters for both meta and para isomers with ferro‐ and anti‐ferromagnetic interactions, respectively. The nitrogen analogue of Thiele's hydrocarbon usually displays predominant closed‐shell nature but its hidden diradical characters increase either in a twisted conformation or upon insertion of an additional phenylene spacer. The observed distinct diradical nature of the para‐congener indicates that diradical properties can be enhanced also by efficient spin delocalization.  相似文献   

11.
2,2′‐Anhydro‐1‐(3′,5′‐di‐O‐acetyl‐β‐D‐arabinofuranosyl)uracil, C13H14N2O7, was obtained by refluxing 2′,3′‐O‐(methoxymethylene)uridine in acetic anhydride. The structure exhibits a nearly perfect C4′‐endo (4E) conformation. The best four‐atom plane of the five‐membered furanose ring is O—C—C—C, involving the C atoms of the fused five‐membered oxazolidine ring, and the torsion angle is only −0.4 (2)°. The oxazolidine ring is essentially coplanar with the six‐membered uracil ring [r.m.s. deviation = 0.012 (5) Å and dihedral angle = −3.2 (3)°]. The conformation at the exocyclic C—C bond is gauche–trans which is stabilized by various C—H...π and C—O...π interactions.  相似文献   

12.
The mononuclear title complex, [Co(C6H6NO6)(C2H8N2)]·3H2O, contains an octahedrally coordinated CoIII atom. The N‐(carboxy­methyl)­aspartate moiety is coordinated as a tetradentate ligand, providing an OONO‐donor set and forming two trans five‐membered chelate rings and one six‐membered chelate ring. A seven‐membered chelate ring is also formed, which consists of part of the six‐membered chelate ring and part of one of the five‐membered chelate rings. The crystal structure of the complex is stabilized by hydrogen bonds with three water mol­ecules.  相似文献   

13.
Some thermally stable second‐order nonlinear optical (NLO) polyimides were synthesized. The polyimides were prepared by the ring‐opening polyaddition of 4,4′‐(hexafluoroisopropylidene) diphthalic anhydride and pyromellitic dianhydride with two aromatic azodiamine derivatives as the NLO chromophores. These chromophores, based on a nitro group connected with azobenzene as the acceptor end of a donor–π‐bridge–acceptor chromophore and a diamine group as the donor end, had specific chemical stability. On the basis of ZERNER'S INDO methods, according to the sum‐over‐states formula, a program for the calculation of nonlinear second‐order optical susceptibilities was devised. The resulting polyimides had high number‐average and weight‐average molecular weights of up to 26,000 and 53,500, respectively, and a large glass‐transition temperature of 248 °C. With an in situ poling and temperature ramping technique, the optimal temperatures (Topt's) for corona poling were obtained for the largest second‐order NLO response. The electrooptic coefficient (γ33) of a polyimide at a wavelength of 830 nm was up to 21 pm/V after corona poling under its Topt, and the value remained at elevated temperatures (>90.6% was retained at 240 °C for >120 h). The thermal stability of the NLO polyimides was studied with UV spectrometry after poling of the films. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2478–2486, 2002  相似文献   

14.
The mechanism of the cycloaddition reaction between singlet dichlorosilylene germylidene (Cl2Si?Ge:) and formaldehyde has been investigated with the CCSD(T)//MP2/6‐31G* method. From the potential energy profile, it could be predicted that the reaction has one dominant reaction pathway. The reaction rule presented is that the two reactants first form a four‐membered Si‐heterocyclic ring germylene through the [2 + 2] cycloaddition reaction. Because of the 4p unoccupied orbital of Ge atom in the four‐membered Si‐heterocyclic ring germylene and the π orbital of formaldehyde forming a π→p donor–acceptor bond, the four‐membered Si‐heterocyclic ring germylene further combines with formaldehyde to form an intermediate. Because the Ge atom in intermediate undergoes sp3 hybridization after transition state, then, the intermediate isomerizes to a spiro‐heterocyclic ring compound involving Si and Ge via a transition state. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
1H‐1, 3‐Benzazaphospholes react with M(CO)5(THF) (M = Cr, Mo, W) to give thermally and relatively air stable η1‐(1H‐1, 3‐Benzazaphosphole‐P)M(CO)5 complexes. The 1H‐ and 13C‐NMR‐data are in accordance with the preservation of the phosphaaromatic π‐system of the ligand. The strong upfield 31P coordination shift, particularly of the Mo and W complexes, forms a contrast to the downfield‐shifts of phosphine‐M(CO)5 complexes and classifies benzazaphospholes as weak donor but efficient acceptor ligands. Nickelocene reacts as organometallic species with metalation of the NH‐function. The resulting ambident 1, 3‐benzazaphospholide anions prefer a μ2‐coordination of the η5‐CpNi‐fragment at phosphorus to coordination at nitrogen or a η3‐heteroallyl‐η5‐CpNi‐semisandwich structure. This is shown by characteristic NMR data and the crystal structure analysis of a η5‐CpNi‐benzazaphospholide. The latter is a P‐bridging dimer with a planar Ni2P2 ring and trans‐configuration of the two planar heterocyclic phosphido ligands arranged perpendicular to the four‐membered ring.  相似文献   

16.
The title compound, (2,6‐diacetylpyridine bis{[2‐(hydroxyimino)propanoyl]hydrazone}(2−))nickel(II) dimethyl sulfoxide solvate monohydrate, [Ni(C15H17N7O4)]·C2H6OS·H2O, represents the first example of square‐planar N4 coordination via N atoms with four different functions, namely amide, azomethine, hydroxyimino and pyridine. The coordination polyhedron of the central Ni atom has a slightly distorted square‐planar geometry. The 2,6‐diacetylpyridine bis{[2‐(hydroxyimino)propanoyl]hydrazone} ligand forms one six‐ and two five‐membered chelate rings, and a pseudo‐chelate ring through an intramolecular hydrogen bond with an amide group as donor and a deprotonated hydroxyimino group as acceptor, resulting in a pseudomacrocyclic arrangement.  相似文献   

17.
The thesis of this paper is that orbital symmetry allowedness does not guarantee concert. The activation energy (Ea) for concerted Diels–Alder and 1,3‐dipolar cycloadditions must be substantially lower than that for a stepwise‐diradical pathway because the diradical has two fewer bonding electrons than anything on the concerted reaction coordinate, including the transition state. Two bonding electrons provide tens of kcal/mol of stabilization. The difference between the experimental Ea and that for diradicals is called the energy of concert (Econ). If experiment represents concert, Econ must be large, and if it represents diradicals Econ will be very small. In this paper, 42 examples are adduced in which firm experimental data show that Econ = 0. These cycloadditions cannot be concerted. While concert remains possible for all cycioadditions not proven stepwise, there is none with compelling evidence for concert.  相似文献   

18.
The impact of topology on the open‐shell characters and the second hyperpolarizabilities (γ) has been addressed for one‐dimensional graphene nanoflakes (GNFs) composed of the smallest trigonal graphene (phenalenyl) units. The main results are: 1) These GNFs show not only diradical but also multiradical characters when increasing the number of linked units. 2) GNFs composed of an equivalent number of units can exhibit a wide range of open‐shell characters—from nearly closed‐shell to pure multiradical characters—depending on the linking pattern of the trigonal units. 3) This wide variation in open‐shell characters is explained by their resonance structures and/or by their (HOMO?i)?(LUMO+i) gaps deduced from the orbital correlations. 4) The change in the linking structure of the units can effectively control their open‐shell characters as well as their γ values, of which the longitudinal components are significantly enhanced for the singlet GNFs having intermediate open‐shell characters. 5) Singlet alternately linked (AL) systems present intermediate multiradical characters even in the case of a large number of units, which creates a significant enhancement of γ with increasing the size, whereas nonalternately linked (NAL) systems, which present pure multiradical characters, possess much smaller γ values. Finally 6) by switching from the singlet to the highest spin states, the γ values of NAL systems hardly change, whereas those of AL systems exhibit large reductions. These fascinating structure–property relationships between the topology of the GNFs, their open‐shell characters, and their γ values not only deepen the understanding of open‐shell characters of GNFs but aim also at stimulating further design studies to achieve giant NLO responses based on open‐shell graphene‐like materials.  相似文献   

19.
In the title compounds, C12H20O6, (I), and C9H16O6, (II), the five‐membered furanose ring adopts a 4T3 conformation and the five‐membered 1,3‐dioxolane ring adopts an E3 conformation. The six‐membered 1,3‐dioxane ring in (I) adopts an almost ideal OC3 conformation. The hydrogen‐bonding patterns for these compounds differ substantially: (I) features just one intramolecular O—H...O hydrogen bond [O...O = 2.933 (3) Å], whereas (II) exhibits, apart from the corresponding intramolecular O—H...O hydrogen bond [O...O = 2.7638 (13) Å], two intermolecular bonds of this type [O...O = 2.7708 (13) and 2.7730 (12) Å]. This study illustrates both the similarity between the conformations of furanose, 1,3‐dioxolane and 1,3‐dioxane rings in analogous isopropylidene‐substituted carbohydrate structures and the only negligible influence of the presence of a 1,3‐dioxane ring on the conformations of furanose and 1,3‐dioxolane rings. In addition, in comparison with reported analogs, replacement of the –CH2OH group at the C1‐furanose position by another group can considerably affect the conformation of the 1,3‐dioxolane ring.  相似文献   

20.
Tetrahydrotetrazoles are a little‐explored class of five‐membered heterocycles with four contiguous singly‐bonded N atoms. Recent work in our labs has demonstrated that urazole radicals are amenable to N—N bond formation via radical combination to form such a chain of four N atoms. Previously described 1,1‐bis‐urazole compounds appeared to be convenient precursors to the target tetrazoles via their oxidation to intermediate urazole diradicals, which upon N—N bond formation would complete the tetrazole framework. While oxidation proceeded smoothly, the novel 10‐membered octaaza heterocycle 7,7,18,18‐tetraacetyl‐4,10,15,21‐tetraphenyl‐1,2,4,6,8,10,12,13,15,17,19,21‐dodecaazapentacyclo[17.3.0.02,6.08,12.013,17]docosan‐3,5,9,11,14,16,20,22‐octone, C42H32N12O12, was obtained (36% yield) instead of the expected tetrazole product, as confirmed by X‐ray crystallography. Calculations at the (U)B3LYP/6‐311G(d,p) level of theory suggest that the desired tetrazoles have weak N—N bonds connecting the two urazole units.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号