首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Crystal Structure of Cs2S and a Remark about Cs2Se, Cs2Te, Rb2Se, and Rb2Te Cs2S crystallizes orthorhombic, a = 8.571, b = 5.383, c = 10.39 Å, Z = 4, d = 4.13, dpyk = 4.19 g · cm?3, D–Pnma with \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {{\rm Cs}}\limits^|,\mathop {{\rm Cs}}\limits^\parallel $\end{document} and S in 4(c) each, for parameter see text. It is R = 10,4% for 202 of 222 possible reflexes. There is a sequence of S2? corresponding to the hexagonal closest packing of sphares. Cs occupies half of “tetrahedron” and all “octahedron vacancies”; the deviation of \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {{\rm Cs}}\limits^|, $\end{document} in ?oktahedron vacancies”? is noticeable. Effective Coordination Numbers, ECoN, and the Madelung Part of Lattice Energy, MAPLE, are calculated and discussed.  相似文献   

2.
Although terminal chalcogeno ligands are well known for the group 5 and 6 transition metals, they are highly unusual for the oxophilic group 4 metals and unknown so far for the lanthanides or actinides. Cs3UP2S8, is the first actinide compound containing a terminal M=S group. It was synthesized by reacting uranium metal, Cs2S, S, and P2S5 in a 4:1:8:3 ratio at 700 °C in an eutectic LiCl/CsCl mixture. The crystal structure was determined by single‐crystal X‐ray diffraction techniques. Cs3UP2S8 crystallizes in the rhombohedral space group R$\bar{3}$ [a = 15.5217(8) Å; c = 35.132(2) Å, V = 8305.0(8) Å3, Z = 18]. The crystal structure is based on a tetrahedral network type, wherein the uranium atoms are coordinated by a unusual sulfido moiety and thiophosphate groups in a pseudo‐tetrahedral fashion. The U=S distance of 2.635(3) Å observed in the sulfide moiety is approx. 0.2 Å shorter than the average U–S single bond length, indicating a double‐bond type character.  相似文献   

3.
The crystal structure of Cs2BaTa6Br15O3 has been elucidated by using synchrotron X‐ray powder diffraction and absorption experiments. It is built from edge‐bridged octahedral [(Ta6${{\rm Br}{{{\rm i}\hfill \atop 9\hfill}}}$ ${{\rm O}{{{\rm i}\hfill \atop 3\hfill}}}$ )${{\rm Br}{{{\rm a}\hfill \atop 6\hfill}}}$ ]4? cluster units with a singular poor metallic electron (ME) count equal to thirteen. This leads to a paramagnetic behaviour related to one unpaired electron. The arrangement of the Ta6 clusters is similar to that of Cs2LaTa6Br15O3 exhibiting 14‐MEs per [(Ta6${{\rm Br}{{{\rm i}\hfill \atop 9\hfill}}}$ ${{\rm O}{{{\rm i}\hfill \atop 3\hfill}}}$ )${{\rm Br}{{{\rm a}\hfill \atop 6\hfill}}}$ ]5? motif. The poorer electron‐count cluster presents longer metal–metal distances as foreseen according to the electronic structure of edge‐bridged hexanuclear cluster. Density functional theory (DFT) calculations on molecular models were used to rationalise the structural properties of 13‐ and 14‐ME clusters. Periodic DFT calculations demonstrate that the electronic structure of these solid‐state compounds is related to those of the discrete octahedral units. Oxygen–barium interactions seem to prevent the geometry of the octahedral cluster to strongly distort, allowing stabilisation of this unprecedented electron‐poor Ta6 cluster in the solid state.  相似文献   

4.
Cs6Ta4S22     
The reaction of Cs2S3, Ta and S yields single crystals of the new caesium tantalum chalcogenide hexacaesium tetratantalum docosa­sulfide, Cs6Ta4S22, which is isotypic with Rb6Ta4S22 and the niobium compounds A6Nb4S22 (A = Rb, Cs). The structure consists of discrete [Ta4S22]6? anions and Cs+ cations.  相似文献   

5.
A complex carbide with formula Ta2S2C prepared by sintering can be transformed by mechanical grinding into a modification having a very simple crystal structure. The lattice parameters of this compound (1s-Ta2S2C) were found to be:a=3.265,c=8.537 andc/a=2.615. The atomic positions are (space group \(P\bar 3ml\) ): $$\begin{gathered} 2 Ta in 2 d) (z = 0.141) \hfill \\ 2 S in 2 d) (z = 0.65) \hfill \\ 1 C in 1 a \hfill \\ \end{gathered} $$ A proposal for the atomic arrangement is presented for the high temperature phase 3s-Ta2S2C with the parameters:a H=3.276 c H=25.62 Å andc/a=7.82, space group \(R\bar 3m\) . The crystal structure of Ti4S5 has been determined from single crystal patterns. The lattice parameters are:a=3.439,c=28.93 Å andc/a=8.413. The atomic positions (space group P 63/mmc) are: 2 Ti in 2 a), 2.6 Ti in 4 e) (z=0.1055); 3.5 Ti in 4 f) (z=0.197); 2 S in b); 2 4 S in 4 f) (z=0.052) and 4 S in 4 f) (z=0.649).  相似文献   

6.
Cs4Re6S13 and Cs4Re6S13.5 — Two Compounds with [Re6S8] Clusters Slightly Differing as to their Framework Structures Cs4Re6S13 was synthesized by the reaction of cesium carbonate with rhenium at 800°C in an argon atmosphere charged with sulphur. The preparation of Cs4Re6S13.5 succeeded by an analogous procedure using a stream of H2S. Structural investigations on single crystals revealed atomic arrangements in which [Re6S8] clusters are linked threedimensionally by Sn2? bridges. In the compound Cs4Re6S13 $\buildrel \wedge \over =$ Cs4[Re6S8]S2/2(S2)4/2 the rhenium atoms of adjacent Re6-octahedra are connected by sulphide and disulphide bridges in a ratio of 1:2. In the compound Cs4Re6S13.5 $\buildrel \wedge \over =$ Cs4[Re6S8]S2/2(S2)3/2(S3)1/2 one disulphide bridge is replaced by one trisulphide bridge. The nearly regular Re6-octahedra correspond with a diamagnetic 24-electron configuration.  相似文献   

7.
The crystal structure of dicaesium pentadecamolybdenum nonadeca­sulfide, Cs2Mo15S19, consists of a mixture of Mo6S8S6 and Mo9S11S6 cluster units in a 1:1 ratio. Both units are interconnected via inter‐unit Mo—S bonds. The Cs+ cations occupy large voids between the different cluster units. The Cs and two inner S atoms lie on sites with 3 symmetry (Wyckoff site 12c) and the Mo and S atoms of the median plane of the Mo9S11S6 cluster unit on sites with 2 symmetry (Wyckoff site 18e).  相似文献   

8.
《Solid State Sciences》2004,6(1):109-116
The exploration of the CsReSBr system, in order to identify new phases based on octahedral cluster anions, has produced single crystals of Cs4Re6S8Br6 (1) (trigonal, space group P-6c2, a=9.7825 (3) Å, c=18.7843 (5) Å, V=1556.77 (1) Å3, Z=2, density=5.09 g cm−3, μ=36.07 mm−1) and Cs2Re6S8Br4 (2) (monoclinic, space group P21/n, a=6.3664 (1) Å, b=18.4483 (4) Å, c=9.3094 (2) Å, β=104.2618 (8)°, V=1059.69 (4) Å3, Z=2, density=6.14 g cm−3, μ=45.83 mm−1). These two compounds have been obtained by high-temperature solid state route. Their structures have been solved and refined from single crystal X-ray diffraction data. The structure of Cs4Re6S8Br6 presents isolated anionic cluster units inscribed in a (Cs+)12 cuboctahedron and the one of Cs2Re6S8Br4 exhibits ReSi-a,a-iRe inter-unit bridges. The framework of the latter presents then a strongly 1-D character.  相似文献   

9.
The sodium–sulfur (NAS) battery is a candidate for energy storage and load leveling in power systems, by using the reversible reduction of elemental sulfur by sodium metal to give a liquid mixture of polysulfides (Na2Sn) at approximately 320 °C. We investigated a large number of reactions possibly occurring in such sodium polysulfide melts by using density functional calculations at the G3X(MP2)/B3LYP/6‐31+G(2df,p) level of theory including polarizable continuum model (PCM) corrections for two polarizable phases, to obtain geometric and, for the first time, thermodynamic data for the liquid sodium–sulfur system. Novel reaction sequences for the electrochemical reduction of elemental sulfur are proposed on the basis of their Gibbs reaction energies. We suggest that the primary reduction product of S8 is the radical anion ${{\rm S}{{{{\bullet}}- \hfill \atop 8\hfill}}}$ , which decomposes at the operating temperature of NAS batteries exergonically to the radicals ${{\rm S}{{{{\bullet}}- \hfill \atop 2\hfill}}}$ and ${{\rm S}{{{{\bullet}}- \hfill \atop 3\hfill}}}$ together with the neutral species S6 and S5, respectively. In addition, ${{\rm S}{{{{\bullet}}- \hfill \atop 8\hfill}}}$ is predicted to disproportionate exergonically to S8 and ${{\rm S}{{2- \hfill \atop 8\hfill}}}$ followed by the dissociation of the latter into two ${{\rm S}{{{{\bullet}}- \hfill \atop 4\hfill}}}$ radical ions. By recombination reactions of these radicals various polysulfide dianions can in principle be formed. However, polysulfide dianions larger than ${{\rm S}{{2- \hfill \atop 4\hfill}}}$ are thermally unstable at 320 °C and smaller dianions as well as radical monoanions dominate in Na2Sn (n=2–5) melts instead. The reverse reactions are predicted to take place when the NAS battery is charged. We show that ion pairs of the types ${{\rm NaS}{{{{\bullet}}\hfill \atop 2\hfill}}}$ , ${{\rm NaS}{{- \hfill \atop n\hfill}}}$ , and Na2Sn can be expected at least for n=2 and 3 in NAS batteries, but are unlikely in aqueous sodium polysulfide except at high concentrations. The structures of such radicals and anions with up to nine sulfur atoms are reported, because they are predicted to play a key role in the electrochemical reduction process. A large number of isomerization, disproportionation, and sulfurization reactions of polysulfide mono‐ and dianions have been investigated in the gas phase and in a polarizable continuum, and numerous reaction enthalpies as well as Gibbs energies are reported.  相似文献   

10.
A unique heterobimetallic disulfur monoradical, complex 2 , with a diamond‐shaped {NiS2Pt} core has been synthesized by two‐electron reduction of a supersulfido‐(nacnac)nickel(II) complex (nacnac=β‐diketiminato) with [Pt(Ph3P)22‐C2H4)] as a platinum(0) source and isolated in 82 % yield. Strikingly, the results of DFT calculations in accordance with spectroscopic (EPR, paramagnetic NMR) and structural features of the complex revealed that the bonding situation of the S2 ligand is between the elusive “half‐bonded” S2 radical trianion (${{\rm S}{{{{\bullet}}3- \hfill \atop 2\hfill}}}$ ) and two separated S2? ligands. Accordingly, the NiII center is partially oxidized, whereas the PtII site is redox innocent. The complex can be reversibly oxidized to the corresponding Ni,Pt‐disulfido monocation, compound 3 , with a S? S single bond, and reacts readily with O2 to form the corresponding superoxonickel(II) and disulfidoplatinum(II) ( 4 ) complexes. These compounds have been isolated in crystalline form and fully characterized, including IR and multi‐nuclear NMR spectroscopy as well as ESI mass spectrometry. The molecular structures of compounds 2 – 4 have been confirmed by single‐crystal X‐ray crystallography.  相似文献   

11.
Synthesis and Crystal Structure of the Fluoride ino‐Oxosilicate Cs2YFSi4O10 The novel fluoride oxosilicate Cs2YFSi4O10 could be synthesized by the reaction of Y2O3, YF3 and SiO2 in the stoichiometric ratio 2 : 5 : 3 with an excess of CsF as fluxing agent in gastight sealed platinum ampoules within seventeen days at 700 °C. Single crystals of Cs2YFSi4O10 appear as colourless, transparent and water‐resistant needles. The characteristic building unit of Cs2YFSi4O10 (orthorhombic, Pnma (no. 62), a = 2239.75(9), b = 884.52(4), c = 1198.61(5) pm; Z = 8) comprises infinite tubular chains of vertex‐condensed [SiO4]4? tetrahedra along [010] consisting of eight‐membered half‐open cube shaped silicate cages. The four crystallographically different Si4+ cations all reside in general sites 8d with Si–O distances from 157 to 165 pm. Because of the rigid structure of this oxosilicate chain the bridging Si–O–Si angles vary extremely between 128 and 167°. The crystallographically unique Y3+ cation (in general site 8d as well) is surrounded by four O2? and two F? anions (d(Y–O) = 221–225 pm, d(Y–F) = 222 pm). These slightly distorted trans‐[YO4F2]7? octahedra are linked via both apical F? anions by vertex‐sharing to infinite chains along [010] (?(Y–F–Y) = 169°, ?(F–Y–F) = 177°). Each of these chains connects via terminal O2? anions to three neighbouring oxosilicate chains to build up a corner‐shared, three‐dimensional framework. The resulting hexagonal and octagonal channels along [010] are occupied by the four crystallographically different Cs+ cations being ten‐, twelve‐, thirteen‐ and fourteenfold coordinated by O2? and F? anions (viz.[(Cs1)O10]19?, [(Cs2)O10F2]21?, [(Cs3)O12F]24?, and [(Cs4)O12F2]25? with d(Cs–O) = 309–390 pm and d(Cs–F) = 360–371 pm, respectively).  相似文献   

12.
Crystal Structure and Vibration Spectra of Cs2P2S6 and K2P2S6 . Cs2P2S6 and K2P2S6 crystallize in the orthorhombic system, space group Immm, Z = 2 with the lattice constants . The compounds are isotypic to Tl2P2S6. In the structure there are discrete P2S62? anions. Two PS4 tetrahedra are connected by a common edge to hexathiometadiphosphate groups. The far infrared, infrared, and Raman spectra of these compounds are assigned on the basis of P2S62? units with D2h symmetry in analogy to the isoelectronic Al2Cl6. The melting points are 440 ± 10°C for Cs2P2S6 and 508 ± 10°C for K2P2S6.  相似文献   

13.
Hydrolyses of HC?CSO3SiMe3 ( 1 ) and CH3C?CSO3SiMe3 ( 2 ) lead to the formation of acetylenic sulfonic acids HC?CSO3H?2.33 H2O ( 3 ) and CH3C?CSO3H?1.88 H2O ( 4 ). These acids were reacted with guanidinium carbonate to yield [+C(NH2)3][HC?CSO3?] ( 5 ) and [+C(NH2)3][CH3C?CSO3?] ( 6 ). Compounds 1 – 6 were characterized by spectroscopic methods, and the X‐ray crystal structures of the guanidinium salts were determined. The X‐ray results of 5 show that the guanidinium cations and organosulfonate anions associate into 1D ribbons through ${{\rm R}{{2\hfill \atop 2\hfill}}}$ (8) dimer interactions, whereas association of these ions in 6 is achieved through ${{\rm R}{{2\hfill \atop 2\hfill}}}$ (8) and ${{\rm R}{{1\hfill \atop 2\hfill}}}$ (6) interactions. The ribbons in 5 associate into 2D sheets through ${{\rm R}{{2\hfill \atop 2\hfill}}}$ (8) dimer interactions and ${{\rm R}{{3\hfill \atop 6\hfill}}}$ (12) rings, whereas those in 6 are connected through ${{\rm R}{{1\hfill \atop 2\hfill}}}$ (6) and ${{\rm R}{{2\hfill \atop 2\hfill}}}$ (8) dimer interactions and ${{\rm R}{{4\hfill \atop 6\hfill}}}$ (14) rings. Compound 6 exhibits a single‐layer stacking motif similar to that found in guanidinium alkane‐ and arenesulfonates, that is, the alkynyl groups alternate orientation from one ribbon to the next. The stacking motif in 5 is also single‐layer, but due to interlayer hydrogen bonding between sulfonate anions, the alkynyl groups of each sheet all point to the same side of the sheet.  相似文献   

14.
Three Alkali‐Metal Erbium Thiophosphates: From the Layered Structure of KEr[P2S7] to the Three‐Dimensional Cross‐Linkage in NaEr[P2S6] and Cs3Er5[PS4]6 The three alkali‐metal erbium thiophosphates NaEr[P2S6], KEr[P2S7], and Cs3Er5[PS4] show a small selection of the broad variety of thiophosphate units: from ortho‐thiophosphate [PS4]3? and pyro‐thiophosphate [S3P–S–PS3]4? with phosphorus in the oxidation state +V to the [S3P–PS3]3? anion with a phosphorus‐phosphorus bond (d(P–P) = 221 pm) and tetravalent phosphorus. In spite of all differences, a whole string of structural communities can be shown, in particular for coordination and three‐dimensional linkage as well as for the phosphorus‐sulfur distances (d(P–S) = 200 – 213 pm). So all three compounds exhibit eightfold coordinated Er3+ cations and comparably high‐coordinated alkali‐metal cations (CN(Na+) = 8, CN(K+) = 9+1, and CN(Cs+) ≈ 10). NaEr[P2S6] crystallizes triclinically ( ; a = 685.72(5), b = 707.86(5), c = 910.98(7) pm, α = 87.423(4), β = 87.635(4), γ = 88.157(4)°; Z = 2) in the shape of rods, as well as monoclinic KEr[P2S7] (P21/c; a = 950.48(7), b = 1223.06(9), c = 894.21(6) pm, β = 90.132(4)°; Z = 4). The crystal structure of Cs3Er5[PS4] can also be described monoclinically (C2/c; a = 1597.74(11), b = 1295.03(9), c = 2065.26(15) pm, β = 103.278(4)°; Z = 4), but it emerges as irregular bricks. All crystals show the common pale pink colour typical for transparent erbium(III) compounds.  相似文献   

15.
The new hexathiodiphosphate(IV) hydrates K4[P2S6] · 4 H2O ( 1 ), Rb4[P2S6] · 6 H2O ( 2 ), and Cs4[P2S6] · 6 H2O ( 3 ) were synthesized by soft chemistry reactions from aqueous solutions of Na4[P2S6] · 6 H2O and the corresponding heavy alkali‐metal hydroxides. Their crystal structures were determined by single crystal X‐ray diffraction. K4[P2S6] · 4 H2O ( 1 ) crystallizes in the monoclinic space group P 21/n with a = 803.7(1), b = 1129.2(1), c = 896.6(1) pm, β = 94.09(1)°, Z = 2. Rb4[P2S6] · 6 H2O ( 2 ) crystallizes in the monoclinic space group P 21/c with a = 909.4(2), b = 1276.6(2), c = 914.9(2) pm, β = 114.34(2)°, Z = 2. Cs4[P2S6] · 6 H2O ( 3 ) crystallizes in the triclinic space group with a = 742.9(2), b = 929.8(2), c = 936.8(2) pm, α = 95.65(2), β = 112.87(2), γ = 112.77(2)°, Z = 1. The structures are built up by discrete [P2S6]4? anions in staggered conformation, the corresponding alkali‐metal cations and water molecules. O ··· S and O ··· O hydrogen bonds between the [P2S6]4? anions and the water molecules consolidate the structures into a three‐dimensional network. The different water‐content compositions result by the corresponding alkali‐metal coordination polyhedra and by the prefered number of water molecules in their coordination sphere, respectively. The FT‐Raman and FT‐IR/FIR spectra of the title compounds have been recorded and interpreted, especially with respect to the [P2S6]4? group. The thermogravimetric analysis showed that K4[P2S6] · 4 H2O converted to K4[P2S6] as it was heated at 100 °C.  相似文献   

16.
On the Trithiocyanatoargentates Rb2Ag(SCN)3 and Cs2Ag(SCN)3 The trithiocyanatoargentates Rb2Ag(SCN)3 and CsAg(SCN)3 are obtained by crystallization from highly concentrated aqueous solutions. In the crystal structures the Ag atoms are surrounded tetrahedrally by the S atoms of 4 SCN groups. These Ag(SCN)4 tetrahedra are connected by common corners to polymer \documentclass{article}\pagestyle{empty}\begin{document}$ {}_\infty ^1 \left[{{\rm Ag}\left({{\rm SCN}} \right)_2 \left({{\rm SCN}_{2/2}} \right)} \right] $\end{document}1[Ag(SCN)2(SCN)2/2] anion in Rb2Ag(SCN)3, whereas dimeric Ag2(SCN)6 anions were found in the Cs compound.  相似文献   

17.
The solubility of H2S at 25°C in solvents of the composition: [H+]=H M, [Na+]=(I?H)=A M, [ClO4 ?]=I M was investigated by iodometric determination of [H2S]tot in the saturated solutions. Kp12=[H2S]tot·p H2S ?1 was calculated. The results are consistent with the equation:
$$\begin{gathered} \lg [H_2 S]_{tot} \cdot p_{H_2 S}^{ - 1} = --- 0,991_8 --- 0,059_0 [Na + ] + 0,008_1 [H + ]--- \hfill \\ ---0,000_1 [H + ]^4 . \hfill \\ \end{gathered} $$  相似文献   

18.
Preparation and Crystal Structure of the Dialkali Metal Trichalcogenides Rb2S3, Rb2Se3, Cs2S3, and Cs2Se3 Crystalline products were obtained by the reaction of the pure alkali metals with the chalcogens in the molar ratio 2:3 in liquid ammonia at pressures up to 3000 bar and temperatures around 600 K. The substances crystallize in the K2S3 type structure (space group Cmc21(NO. 36)). Unit cell constants see ?Inhaltsübersicht”?. The characteristic feature of this structure are bent polyanions X32?:(X = S,Se). The new described compounds are compared with the other known alkali metal trichalcogenides.  相似文献   

19.
The structures of compressed rubidium polyhydrides, RbHn with n>1, and their evolution under pressure are studied using density functional theory calculations. These phases, which start to stabilize at only P=2 GPa, consist of Rb+ cations and one or more of the following species: H? anions, H2 molecules, and ${{\rm H}{{- \hfill \atop 3\hfill}}}$ molecules. The latter motif, the simplest example of a three‐center four‐electron bond, is found in the most stable structures, RbH5 and RbH3, which metallize above 200 GPa. At the highest pressures studied, our evolutionary searches find an RbH6 phase which contains polymeric (${{\rm H}{{- \hfill \atop 3\hfill}}}$ ) chains that show signs of one‐dimensional liquid‐like behavior.  相似文献   

20.
Six new compounds in the A2LiMS4 (A=K, Rb, Cs; M=V, Nb, Ta) family, namely K2LiVS4, Rb2LiVS4, Cs2LiVS4, Rb2LiNbS4, Cs2LiNbS4, and Rb2LiTaS4, have been synthesized by the reactions of the elements in Li2S/S/A2S3 (A=K, Rb, Cs) fluxes at 773 K. The A and M atoms play a role in the coordination environment of the Li atoms, leading to different crystal structures. Coordination numbers of Li atoms are five in K2LiVS4, four in A2LiVS4 (A=Rb, Cs) and Cs2LiNbS4, and both four and five in Rb2LiMS4 (M=Nb, Ta). The A2LiVS4 (A=Rb, Cs) structure comprises one-dimensional chains of tetrahedra. The Rb2LiMS4 (M=Nb, Ta) structure is composed of two-dimensional layers. The Cs2LiNbS4 structure contains one-dimensional chains that are related to the Rb2LiMS4 layers. The K2LiVS4 structure contains a different kind of layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号