首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new solid‐sate donor–acceptor system based on periodic mesoporous organosilica (PMO) has been constructed. Viologen (Vio) was covalently attached to the framework of a biphenyl (Bp)‐bridged PMO. The diffuse reflectance spectrum showed the formation of charge‐transfer (CT) complexes of Bp in the framework with Vio in the mesochannels. The transient absorption spectra upon excitation of the CT complexes displayed two absorption bands due to radical cations of Bp and Vio species, which indicated electron transfer from Bp to Vio. The absorption bands slowly decayed with a half‐decay period of approximately 10 μs but maintained the spectral shape, thereby suggesting persistent charge separation followed by recombination. To utilize the charge separation for photocatalysis, Vio–Bp–PMO was loaded with platinum and its photocatalytic performance was tested. The catalyst successfully evolved hydrogen with excitation of the CT complexes in the presence of a sacrificial agent. In contrast, reference catalysts without either Bp–PMO or Vio gave no or little hydrogen generation, respectively. In addition, a homogeneous solution system of Bp molecules, methylviologen, and colloidal platinum also evolved no hydrogen, possibly due to a weaker electron‐donating feature of molecular Bp than that of densely packed Bp in Bp–PMO. These results indicated that densely packed Bp and Vio are essential for hydrogen evolution in this system and demonstrated the potential of PMO as the basis for donor–acceptor systems suitable for photocatalysis.  相似文献   

2.
Broadband capturing and FRET‐based light‐harvesting molecular triads, CRBs, based on the coumarin–rhodamine–BODIPY platform were rationally designed and synthesized. The absorption band of CRBs starts from blue–green to yellow–orange regions (330–610 nm), covering the strong radiation scope of sunlight. The peripheral coumarin and BODIPY chromophore energy could transfer to the central acceptor rhodamine by a one‐step direct way. The energy of the coumarin moiety could also transfer to the BODIPY unit, subsequently transferring to the rhodamine core by two‐step sequential ways. Both the efficiencies of the coumarin moiety and the BODIPY unit to the rhodamine core in CRBs, determined by two different ways, are very high.  相似文献   

3.
The synthesis of two series of peptidic chains composed of bis(terpyridine)ruthenium(II) acceptor units and organic chromophores (coumarin, naphthalene, anthracene, fluorene) by stepwise solid‐phase peptide synthesis (SPPS) techniques is described. The first series of dyads comprises directly amide linked chromophores, while the second one possesses a glycine spacer between the two chromophores. All dyads were studied by UV/Vis and NMR spectroscopy, steady‐state luminescence, luminescence decay and electrochemistry, as well as by DFT calculations. The results of these studies indicate weak electronic coupling of the chromophores in the ground state. Absorpion spectra of all dyads are dominated by metal‐to‐ligand charge‐transfer (MLCT) bands around 500 nm. The bichromophoric systems, especially with coumarin as organic chromophore, display additional strong absorptions in the visible spectral region. All complexes are luminescent at room temperature (3MLCT). Efficient quenching of the fluorescence of the organic chromophore by the attached ruthenium complex is observed in all dyads. Excitation spectra indicate energy transfer from the organic dye to the ruthenium chromophore.  相似文献   

4.
《化学:亚洲杂志》2018,13(16):2117-2125
Integration of functional molecular parts into nanoporous materials in a state that allows intermolecular charge or energy transfer is one of the key approaches to the development of photofunctional and electroactive materials. Herein, we report charge separation in a functionalized framework of a periodic mesoporous organosilica (PMO) self‐assembled by hydrogen bonds. Electroactive π‐conjugated organic species with different electron‐donating and electron‐accepting properties were selectively fixed onto the external surface of a nanoparticulate PMO, within the pore wall, and onto the surface of the internal mesopore. UV irradiation of the modified PMO resulted in photoinduced electron transfer and charge separation from the external surface to the pore wall and from the pore wall to the surface of the internal mesopores. These results suggest the high potential of multifunctionalized PMOs in the construction of photocatalytic reaction fields.  相似文献   

5.
We have synthesized two new low‐molecular‐mass organogelators based on tri‐p‐phenylene vinylene derivatives, one of which could be designated as the donor whereas the other one is an acceptor. These were prepared specifically to show the intergelator interactions at the molecular level by using donor–acceptor self‐assembly to achieve appropriate control over their macroscopic properties. Intermolecular hydrogen‐bonding, π‐stacking, and van der Waals interactions operate for both the individual components and the mixtures, leading to the formation of gels in the chosen organic solvents. Evidence for intergelator interactions was acquired from various spectroscopic, microscopic, thermal, and mechanical investigations. Due to the photochromic nature of these molecules, interesting photophysical properties, such as solvatochromism and J‐type aggregation, were clearly observed. An efficient energy transfer was exhibited by the mixture of donor–acceptor assemblies. An array of four chromophores was built up by inclusion of two known dyes (anthracene and rhodamine 6G) for the energy‐transfer studies. Interestingly, an energy‐transfer cascade was observed in the assembly of four chromophores in a particular order (anthracene‐donor‐acceptor‐rhodamine 6G), and if one of the components was removed from the assembly the energy transfer process was discontinued. This allowed the build up of a light‐harvesting process with a wide range. Excitation at one end produces an emission at the other end of the assembly.  相似文献   

6.
The work presented herein is devoted to the fabrication of large Stokes shift dyes in both organic and aqueous media by combining dark resonance energy transfer (DRET) and fluorescence resonance energy transfer (FRET) in one donor–acceptor system. In this respect, a series of donor–acceptor architectures of 4,4‐difluoro‐4‐bora‐3a,4a‐diaza‐s‐indacene (BODIPY) dyes substituted by one, two, or three tetraphenylethene (TPE) luminogens were designed and synthesised. The photophysical properties of these three chromophore systems were studied to provide insight into the nature of donor–acceptor interactions in both THF and aqueous media. Because the generation of emissive TPE donor(s) is strongly polarity dependent, due to its aggregation‐induced emission (AIE) feature, one might expect the formation of appreciable fluorescence emission intensity with a very large pseudo‐Stokes shift in aqueous media when considering FRET process. Interestingly, similar results were also recorded in THF for the chromophore systems, although the TPE fragment(s) of the dyes are non‐emissive. The explanation for this photophysical behaviour lies in the DRET. This is the first report on combining two energy‐transfer processes, namely, FRET and DRET, in one polarity‐sensitive donor–acceptor pair system. The accuracy of the dark‐emissive donor property of the TPE luminogen is also presented for the first time as a new feature for AIE phenomena.  相似文献   

7.
A bio‐inspired design of using metal–organic framework (MOF) microcrystals with well‐defined multi‐shelled hollow structures was used as a matrix to host multiple guests including molecules and nanoparticles at separated locations to form a hierarchical material, mimicking biological structures. The interactions such as energy transfer (ET) between different guests are regulated by precisely fixing them in the MOF shells or encapsulating them in the cavities between the MOF shells. The proof‐of‐concept design is demonstrated by hosting chromophore molecules including rhodamine 6G (R6G) and 7‐amino‐4‐(trifluoromethyl)coumarin (C‐151), as well as metal nanoparticles (Pd NPs) into the multi‐shelled hollow zeolitic imidazolate framework‐8 (ZIF‐8). We could selectively establish or diminish the guest‐to‐framework and guest‐to‐guest ET. This work provides a platform to construct complex multifunctional materials, especially those need precise separation control of multi‐components.  相似文献   

8.
Hybrid mesoporous periodic organosilicas (Ph‐PMOs) with phenylene moieties embedded inside the silica matrix were used as a heterogeneous catalyst for the Ullmann coupling reaction in water. XRD, N2 sorption, TEM, and solid‐state NMR spectroscopy reveal that mesoporous Ph‐PMO supports and Pd/Ph‐PMO catalysts have highly ordered 2D hexagonal mesostructures and covalently bonded organic–inorganic (all Si atoms bonded with carbon) hybrid frameworks. In the Ullmann coupling reaction of iodobenzene in water, the yield of biphenyl was 94 %, 34 %, 74 % and for palladium‐supported Ph‐PMO, pure silica (MCM‐41), and phenyl‐group‐modified Ph‐MCM‐41 catalysts, respectively. The selectivity toward biphenyl reached 91 % for the coupling of boromobenzene on the Pd/Ph‐PMO catalyst. This value is much higher than that for Pd/Ph‐MCM‐41 (19 %) and Pd/MCM‐41 (0 %), although the conversion of bromobenzene for these two catalysts is similar to that for Pd/Ph‐PMO. The large difference in selectivity can be attributed to surface hydrophobicity, which was evaluated by the adsorption isotherms of water and toluene. Ph‐PMO has the most hydrophobic surface, and in turn selectively adsorbs the reactant haloaryls from aqueous solution. Water transfer inside the mesochannels is thus restricted, and the coupling reaction of bromobenzene is improved.  相似文献   

9.
Summary: The first examples of the dye‐coated semi‐conducting polymer nanoparticles as well as experiments to demonstrate the excitation energy transfer from the excited chromophor of the nanoparticle to the fluorescent dye are described. We have demonstrated that the blue fluorescence of the dye‐coated polyfluorene nanoparticles is only slightly quenched after dye deposition. However, a new emission band of the surface‐bound dye (Rhodamine 6G or Rhodamine TM) appears in the wavelength region of 530–600 nm. These results clearly indicate an effective excitation energy transfer from the excited PF chromophores to the fluorescent dye.

Emission spectra of PF2/6 nanoparticle dispersion and of Rhodamine 6G‐coated nanoparticle dispersion.  相似文献   


10.
The synthesis and photophysical properties of two novel multichromophoric compounds is presented. Their molecular design comprises a carbonyl‐bridged triarylamine core and either naphthalimides or 4‐(5‐hexyl‐2,2′‐bithiophene)naphthalimides as second chromophore in the periphery. The lateral chromophores are attached to the core via an amide linkage and a short alkyl spacer. The synthetic approach demonstrates a straightforward functionalization strategy for carbonyl‐bridged triarylamines. Steady‐state and time‐resolved spectroscopic investigations of these compounds, in combination with three reference compounds, provide clear evidence for energy transfer in both multichromophoric compounds. The direction of the energy transfer depends on the lateral chromophore used. Furthermore, the compound bearing the lateral 4‐(bithiophene)naphthaimides is capable of forming fluorescent gels at very low concentrations in the sub‐millimolar regime whilst retaining its energy transfer properties.  相似文献   

11.
Periodic mesoporous organosilica (PMO) materials offer a strategy to position molecular semiconductors within a highly defined, porous network. We developed thin films of a new semiconducting zinc phthalocyanine‐bridged PMO exhibiting a face‐centered orthorhombic pore structure with an average pore diameter of 11 nm. The exceptional degree of order achieved with this PMO enabled us to create thin films consisting of a single porous domain throughout their entire thickness, thus providing maximal accessibility for subsequent incorporation of a complementary phase. The phthalocyanine building blocks inside the pore walls were found to be well‐aggregated, enabling electronic conductivity and extending the light‐harvesting capabilities to the near IR region. Ordered 3D heterojunctions capable of promoting photo‐induced charge transfer were constructed by impregnation of the PMO with a fullerene derivative. When integrated into a photovoltaic device, the infiltrated PMO is capable of producing a high open‐circuit voltage and a considerable photocurrent, which represents a significant step towards potential applications of PMOs in optoelectronics.  相似文献   

12.
We report the synthesis and characterization of a three‐dimensional tetraphenylethene‐based octacationic cage that shows host–guest recognition of polycyclic aromatic hydrocarbons (e.g. coronene) in organic media and water‐soluble dyes (e.g. sulforhodamine 101) in aqueous media through CH???π, π–π, and/or electrostatic interactions. The cage?coronene exhibits a cuboid internal cavity with a size of approximately 17.2×11.0×6.96 Å3 and a “hamburger”‐type host–guest complex, which is hierarchically stacked into 1D nanotubes and a 3D supramolecular framework. The free cage possesses a similar cavity in the crystalline state. Furthermore, a host–guest complex formed between the octacationic cage and sulforhodamine 101 had a higher absolute quantum yield (ΦF=28.5 %), larger excitation–emission gap (Δλex‐em=211 nm), and longer emission lifetime (τ=7.0 ns) as compared to the guest (ΦF=10.5 %; Δλex‐em=11 nm; τ=4.9 ns), and purer emission (ΔλFWHM=38 nm) as compared to the host (ΔλFWHM=111 nm).  相似文献   

13.
The metallically conductive bis(diimino)nickel framework (NiDI), an emerging class of metal–organic framework (MOF) analogues consisting of two‐dimensional (2D) coordination networks, was found to have an energy storage principle that uses both cation and anion insertion. This principle gives high energy led by a multielectron transfer reaction: Its specific capacity is one of the highest among MOF‐based cathode materials in rechargeable energy storage devices, with stable cycling performance up to 300 cycles. This mechanism was studied by a wide spectrum of electrochemical techniques combined with density‐functional calculations. This work shows that a rationally designed material system of conductive 2D coordination networks can be promising electrode materials for many types of energy devices.  相似文献   

14.
An artificial light‐harvesting system with sequential energy‐transfer process was fabricated based on a supramolecular strategy. Self‐assembled from the host–guest complex formed by water‐soluble pillar[5]arene (WP5), a bola‐type tetraphenylethylene‐functionalized dialkyl ammonium derivative (TPEDA), and two fluorescent dyes, Eosin Y (ESY) and Nile Red (NiR), the supramolecular vesicles achieve efficient energy transfer from the AIE guest TPEDA to ESY. ESY can function as a relay to further transfer the energy to the second acceptor NiR and realize a two‐step sequential energy‐transfer process with good efficiency. By tuning the donor/acceptor ratio, bright white light emission can be successfully achieved with a CIE coordinate of (0.33, 0.33). To better mimic natural photosynthesis and make full use of the harvested energy, the WP5?TPEDA‐ESY‐NiR system can be utilized as a nanoreactor: photocatalyzed dehalogenation of α‐bromoacetophenone was realized with 96 % yield in aqueous medium.  相似文献   

15.
Molecules bearing a 4,4‐difluoro‐8‐(aryl)‐1,3,5,7‐tetramethyl‐2,6‐diethyl‐4‐bora‐3a,4a‐diaza‐s‐indacene (bodipy) core and 1‐pyrenyl‐1‐phenyl‐4‐(1‐ethynylpyrene), or 1‐phenyl‐4‐[1‐ethynyl‐(6‐ethynylpyrene)pyrene] units were constructed in a step‐by‐step procedure based on palladium(0)‐promoted cross‐coupling reactions with the required preconstructed modules. X‐ray structures of single crystals reveal a twisted arrangement of the two chromophores. In one case, an almost perfect orthogonal arrangement is found. These dyes are strongly luminescent in solution and display rich electrochemistry in which all redox processes of the bodipy and pyrene fragments are clearly resolved. The absorption spectra indicate that the bodipy and pyrene chromophores are spectrally isolated, thereby inducing a large “virtual” Stokes shift. The latter is realised by efficient transfer of intramolecular excitation energy by the Förster dipole–dipole mechanism. The rate of energy transfer depends on the structure of the dual‐dye system and decreases as the centre‐to‐centre separation increases. The energy transfer efficiency, however, exceeds 90 % in all cases. The linkage of two pyrene residues by an ethyne group leads to a decrease in the energy‐transfer efficiency, with the two polycycles acting as a single chromophore. The directly linked bodipy–pyrene dual dye binds to DNA and operates as an efficient solar concentrator when dispersed in plastic.  相似文献   

16.
A stable nonlinear optical (NLO) film containing “T” type alkoxysilane dye was prepared by sol–gel technology. This crosslinked “T” type alkoxysilane dye was synthesized and fully characterized by FTIR, UV–Vis spectra, and 1H‐NMR. Followed by hydrolysis and copolymerization processes of the alkoxysilane with γ‐glycidoxypropyl trimethoxysilane (KH560) and tetraethoxysilane (TEOS), high quality inorganic–organic hybrid second‐order NLO films were obtained by spin coating. The “T” type structure of the alkoxysilane was found to be effective for improving the temporal stability of the optical nonlinearity due to the reduction in the relaxation of the chromophore in the film materials. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Highly efficient light‐harvesting systems were successfully fabricated in aqueous solution based on the supramolecular self‐assembly of a water‐soluble pillar[6]arene (WP6), a salicylaldehyde azine derivative (G), and two different fluorescence dyes, Nile Red (NiR) or Eosin Y (ESY). The WP6‐G supramolecular assembly exhibits remarkably improved aggregation‐induced emission enhancement and acts as a donor for the artificial light‐harvesting system, and NiR or ESY, which are loaded within the WP6‐G assembly, act as acceptors. An efficient energy‐transfer process takes place from the WP6‐G assembly not only to NiR but also to ESY for these two different systems. Furthermore, both of the WP6‐G‐NiR and WP6‐G‐ESY systems show an ultrahigh antenna effect at a high donor/acceptor ratio.  相似文献   

18.
Efficient multiple‐chromophore coupling in a crystalline metal–organic scaffold was achieved by mimicking a protein system possessing 100 % energy‐transfer (ET) efficiency between a green fluorescent protein variant and cytochrome b562. The two approaches developed for ET relied on the construction of coordination assemblies and host–guest coupling. Based on time‐resolved photoluminescence measurements in combination with calculations of the spectral overlap function and Förster radius, we demonstrated that both approaches resulted in a very high ET efficiency. In particular, the observed ligand‐to‐ligand ET efficiency value was the highest reported so far for two distinct ligands in a metal–organic framework. These studies provide important insights for the rational design of crystalline hybrid scaffolds consisting of a large ensemble of chromophore molecules with the capability of directional ET.  相似文献   

19.
New organic dyes containing pyrenylamine donors in a cascade arrangement and cyanoacrylic acid acceptors have been synthesized and characterized by optical, electrochemical, and theoretical studies. The dyes inherit a D ‐π1‐D ‐π2‐A (D=donor, A=acceptor) molecular architecture where the π linkers π1 are changed from phenyl to biphenyl and fluorene, whereas the π linker π2 that connects the donor fragment with the acceptor is a phenyl unit. The conjugation pathway linking the two donor segments has been found to play a major role in the optical and electrochemical properties. Shorter π linkers such as phenyl groups facilitate the donor–acceptor interaction while the nonplanar biphenyl spacer decreases the electronic communication between the donors and enhances the oxidation propensity of the corresponding dye. All the dyes display an intense longer wavelength electronic transition,which is attributable to the amine‐to‐cyanoacrylic acid charge transfer. The extinction coefficient of this peak grows dramatically on increasing the conjugation pathway length between the two donor segments. The dyes were used as sensitizers in nanocrystalline TiO2‐based dye‐sensitized solar cells (DSSCs) and the cascade donor system contributed to the enhancement in the device efficiency due to favorable absorption and redox properties.  相似文献   

20.
The mechanism of one‐carbon unit transfer between 1‐methyl‐5‐amino‐4‐carboxamide imidazole (M‐AICA) and N1‐methyl‐N1‐acryloyl‐formamide (the model molecule of 10‐f‐H4F) is investigated by the Hartree–Fock and DFT methods, respectively, at the 6‐31G* basis level. There are two different channels for the proton transfer, resulting in two reaction pathways with different properties. The results indicate that both channels can complete the reaction, but path a is slightly favored due to its lower active energy barrier. Furthermore, the influence of 4‐carboxamindde in M‐AICA is also discussed. This group can stabilize the reactant and intermediates, and reduce the active energy barrier through the intermolecular hydrogen bond. The intermolecular hydrogen bond results in an enlarged conjugation system and makes the transition states more stable. Our results are in agreement with experiments. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号