首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Metal‐catalyzed functionalizations at the ortho position of a directing group have become an efficient bond‐forming strategy. A wide range of transformations that employ Cp*RhIII catalysts have been described, but despite their synthetic potential, enantioselective variants that use chiral versions of the Cp* ligand remain scarce (Cp*=pentamethyl cyclopentadienyl). Cyclopentadienyl compounds with an atropchiral biaryl backbone are shown to be suitable ligands for the efficient intramolecular enantioselective hydroarylation of aryl hydroxamates. Dihydrofurans that bear methyl‐substituted quaternary stereocenters are thus obtained by C? H functionalization under mild conditions.  相似文献   

2.
Directed Cp*RhIII‐catalyzed carbon–hydrogen (C? H) bond functionalizations have evolved as a powerful strategy for the construction of heterocycles. Despite their high value, the development of related asymmetric reactions is largely lagging behind due to a limited availability of robust and tunable chiral cyclopentadienyl ligands. Rhodium complexes comprising a chiral Cp ligand with an atropchiral biaryl backbone enables an asymmetric synthesis of isoindolones from arylhydroxamates and weakly alkyl donor/acceptor diazo derivatives as one‐carbon component under mild conditions. The complex guides the substrates with a high double facial selectivity yielding the chiral isoindolones in good yields and excellent enantioselectivities.  相似文献   

3.
An asymmetric organocatalytic direct C? H/C? H oxidative coupling reaction of N1,N3‐diphenylmalonamides has been well established by using chiral organoiodine compounds as catalysts, wherein four C? H bonds were stereoselectively functionalized to give structurally diverse spirooxindoles with high levels of enantioselectivity. More importantly, the findings indicated that chiral hypervalent organoiodine reagents can serve as alternative catalysts for the creation of enantioselective functionalization of inactive C? H bonds.  相似文献   

4.
Known for over a century, reactions that involve intramolecular hydride‐transfer events have experienced a recent resurgence. Undoubtedly responsible for the increased interest in this research area is the realization that hydride shifts represent an attractive avenue for C? H bond functionalization. The redox‐neutral nature of these complexity‐enhancing transformations makes them ideal for sustainable reaction development. This Review summarizes recent progress in this field while highlighting key historical contributions.  相似文献   

5.
6.
Cyclopropanes fused to pyrrolidines are important structural features found in a number of marketed drugs and development candidates. Typically, their synthesis involves the cyclopropanation of a dihydropyrrole precursor. Reported herein is a complementary approach which employs a palladium(0)‐catalyzed C? H functionalization of an achiral cyclopropane to close the pyrrolidine ring in an enantioselective manner. In contrast to aryl–aryl couplings, palladium(0)‐catalyzed C? H functionalizations involving the formation of C(sp3)? C(sp3) bonds of saturated heterocycles are very scarce. The presented strategy yields cyclopropane‐fused γ‐lactams from chloroacetamide substrates. A bulky Taddol phosphonite ligand in combination with adamantane‐1‐carboxylic acid as a cocatalyst provides the γ‐lactams in excellent yields and enantioselectivities.  相似文献   

7.
Direct C?H amidation of arylphosphoryl compounds has been developed by using an IrIII catalyst system under mild conditions. A wide range of substrates could be employed with high functional‐group tolerance. This procedure was successfully applied for the first time to the asymmetric reaction giving rise to a P‐chirogenic center with a high diastereomeric ratio of up to 19:1 (90 % de).  相似文献   

8.
A cobalt‐N‐heterocyclic carbene catalyst generated from CoBr2, imidazolium salt, and cyclohexylmagnesium bromide was found to promote the imine‐directed C2‐alkylation of indoles with nonconjugated arylalkenes through a tandem alkene isomerization–hydroarylation process, affording 1,1‐diarylalkanes with exclusive regioselectivity. The feasibility of the tandem catalysis was demonstrated for allyl‐, homoallyl‐, and bishomoallylbenzene derivatives. The catalytic system is also applicable to a variety of β‐substituted styrene derivatives. Mechanistic experiments using deuterium‐labeled indole substrate and Grignard reagent provided insight into the cobalt‐mediated C? H activation step, which likely involves exchange of the C2‐hydrogen atom of the former and the β‐hydrogen atoms of the latter.  相似文献   

9.
1,3‐Enynes containing allylic hydrogens cis to the alkyne are shown to act as one‐carbon partners, rather than two‐carbon partners, in various rhodium‐catalyzed oxidative annulations. The mechanism of these unexpected transformations is proposed to occur through double C? H activation, involving a hitherto rare example of the 1,4‐migration of a RhIII species. This phenomenon is general across a variety of substrates, and provides a diverse range of heterocyclic products.  相似文献   

10.
11.
The direct α‐arylation of cyclic and acyclic ethers with heteroarenes has been accomplished through the design of a photoredox‐mediated C? H functionalization pathway. Transiently generated α‐oxyalkyl radicals, produced from a variety of widely available ethers through hydrogen atom transfer (HAT), were coupled with a range of electron‐deficient heteroarenes in a Minisci‐type mechanism. This mild, visible‐light‐driven protocol allows direct access to medicinal pharmacophores of broad utility using feedstock substrates and a commercial photocatalyst.  相似文献   

12.
Two bulky, chiral, monodentate N‐heterocyclic carbene ligands were applied to palladium‐catalyzed asymmetric C?H arylation to incorporate C(sp3)?H bond activation. Racemic mixtures of the carbamate starting materials underwent regiodivergent reactions to afford different trans‐2,3‐substituted indolines. Although this CAr?Calkyl coupling requires high temperatures (140–160 °C), chiral induction is high. This regiodivergent reaction, when carried out with enantiopure starting materials, can lead to single structurally different enantiopure products, depending on the catalyst chirality. The C?H activation at a tertiary center was realized only in the case of a cyclopropyl group. No C?H activation takes place alpha to a tertiary center. A detailed DFT study is included and analyses of methyl versus methylene versus methine C?H activation is used to rationalize experimentally observed regio‐ and enantioselectivities.  相似文献   

13.
Asymmetric functionalization of aromatic C? H bonds of N,N‐disubstituted anilines with diazo compounds and imines is reported for the efficient construction of α,α‐diaryl benzylic quaternary stereocenters in good yields with high diastereoselectivities and excellent enantioselectivities. This RhII/chiral phosphoric acid cocatalyzed transformation is proposed to proceed through a metal‐carbene‐induced zwitterionic intermediate which undergoes electrophilic trapping. To the best of our knowledge, this is the first asymmetric example of metal carbene‐induced intermolecular functionalization of aryl C? H bonds.  相似文献   

14.
The C?H activation in the tandem, “merry‐go‐round”, [(dppp)Rh]‐catalyzed (dppp=1,3‐bis(diphenylphosphino)propane), four‐fold addition of norborene to PhB(OH)2 has been postulated to occur by a C(alkyl)?H oxidative addition to square‐pyramidal RhIII?H species, which in turn undergoes a C(aryl)?H reductive elimination. Our DFT calculations confirm the RhI/RhIII mechanism. At the IEFPCM(toluene, 373.15 K)/PBE0/DGDZVP level of theory, the oxidative addition barrier was calculated to be 12.9 kcal mol?1, and that of reductive elimination was 5.0 kcal mol?1. The observed selectivity of the reaction correlates well with the relative energy barriers of the cycle steps. The higher barrier (20.9 kcal mol?1) for norbornyl–Rh protonation ensures that the reaction is steered towards the 1,4‐shift (total barrier of 16.3 kcal mol?1), acting as an equilibration shuttle. The carborhodation (13.2 kcal mol?1) proceeds through a lower barrier than the protonation (16.7 kcal mol?1) of the rearranged aryl–Rh species in the absence of o‐ or m‐substituents, ensuring multiple carborhodations take place. However, for 2,5‐dimethylphenyl, which was used as a model substrate, the barrier for carborhodation is increased to 19.4 kcal mol?1, explaining the observed termination of the reaction at 1,2,3,4‐tetra(exo‐norborn‐2‐yl)benzene. Finally, calculations with (Z)‐2‐butene gave a carborhodation barrier of 20.2 kcal mol?1, suggesting that carborhodation of non‐strained, open‐chain substrates would be disfavored relative to protonation.  相似文献   

15.
The gold‐catalyzed C? H annulation of anthranil derivatives with alkynes offers a facile, flexible, and atom‐economical one‐step route to unprotected 7‐acylindoles. An intermediate α‐imino gold carbene, generated by an intermolecular reaction, promotes ortho‐aryl C? H functionalization to afford the target products. The transformation proceeds with a broad range of substrates under mild conditions. Moreover, the obtained functionalized indole products represent a versatile platform for the construction of diverse indolyl frameworks.  相似文献   

16.
A mild and robust direct C? H functionalization strategy has been applied to the synthesis of axially chiral biaryls. Such an efficient and stereoselective transformation occurs through an original dynamic kinetic resolution pathway enabling the conversion of diastereomeric mixtures of non‐prefunctionalized substrates into atropisomerically pure, highly substituted biaryl scaffolds. The main feature of this transformation is the use of an enantiopure sulfoxide as both chiral auxiliary and traceless directing group. The potential of newly synthesized biaryls as valuable building blocks is further illustrated.  相似文献   

17.
The total synthesis of (?)‐isoschizogamine was accomplished, featuring the construction of the quaternary carbon center by the modified Johnson–Claisen rearrangement in basic media and the facile assembly of the key tetracyclic quinolone intermediate through a cascade cyclization. The characteristic cyclic aminal was constructed by late‐stage C?H functionalization at the position adjacent to the lactam nitrogen using a combination of CrO3 and nBu4NIO4 and subsequent Bi(OTf)3‐mediated cyclization.  相似文献   

18.
Under the catalysis of only 3 mol% of Br2 at room temperature, indoles reacted rapidly with isatins to form biologically important 3,3‐bis(indole‐3‐yl)indoline‐2‐(1H)‐ones with high efficiency and wide substrate scope. Moreover, we demonstrated that p‐toluenesulfonic acid (TsOH) could serve as a surrogate to catalyze this transformation.  相似文献   

19.
A catalytic asymmetric total synthesis of the potent and selective antileukemic Δ12‐prostaglandin J312‐PGJ3) is described. The convergent synthesis proceeded through intermediates 2 and 3 , formed enantioselectively from readily available starting materials and coupled through an aldol reaction followed by dehydration to afford stereoselectively the cyclopentenone alkylidene structural motif of the molecule.  相似文献   

20.
Synthesis of heteroatom‐containing ladder‐type π‐conjugated molecules was successfully achieved via a palladium‐catalyzed intramolecular oxidative C?H/C?H cross‐coupling reaction. This reaction provides a variety of π‐conjugated molecules bearing heteroatoms, such as nitrogen, oxygen, phosphorus, and sulfur atoms, and a carbonyl group. The π‐conjugated molecules were synthesized efficiently, even in gram scale, and larger π‐conjugated molecules were also obtained by a double C?H/C?H cross‐coupling reaction and successive oxidative cycloaromatization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号