首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel approach for detection of ligand binding to a protein in solid samples is described. Hydrated precipitates of the anti-apoptotic protein Bcl-xL show well-resolved (13)C-(13)C 2D solid-state NMR spectra that allow site-specific assignment of resonances for many residues in uniformly (13)C-enriched samples. Binding of a small peptide or drug-like organic molecule leads to changes in the chemical shift of resonances from multiple residues in the protein that can be monitored to characterize binding. Differential chemical shifts can be used to distinguish between direct protein-ligand contacts and small conformational changes of the protein induced by ligand binding. The agreement with prior solution-state NMR results indicates that the binding pocket in solid and liquid samples is similar for this protein. Advantages of different labeling schemes involving selective (13)C enrichment of methyl groups of Ala, Val, Leu, and Ile (Cdelta1) for characterizing protein-ligand interactions are also discussed. It is demonstrated that high-resolution solid-state NMR spectroscopy on uniformly or extensively (13)C-enriched samples has the potential to screen proteins of moderate size ( approximately 20 kDa) for ligand binding as hydrated solids. The results presented here suggest the possibility of using solid-state NMR to study ligand binding in proteins not amenable to solution NMR.  相似文献   

2.
We describe an NMR method that directly monitors the influence of ligands on protein-protein interactions. For a two-protein interaction complex, the size of one component should be small enough (less than ca. 15 kDa) to provide a good quality (15)N((13)C) HSQC spectrum after (15)N((13)C) labeling. The size of the second unlabeled component should be large enough so that the molecular weight of the preformed complex is larger than ca. 40 kDa. When the smaller protein binds to a larger one, broadening of NMR resonances results in the disappearance of most of its cross-peaks in the HSQC spectrum. Addition of an antagonist that can dissociate the complex would restore the HSQC spectrum of the smaller component. The method directly shows whether an antagonist releases proteins in their wild-type folded states or whether it induces their denaturation, partial unfolding, or precipitation. We illustrate the method by studying lead compounds that have recently been reported to block the MDM2-p53 interaction. Activation of p53 in tumor cells by inhibiting its interaction with MDM2 offers new strategy for cancer therapy.  相似文献   

3.
The quantitative analysis of protein-protein and protein-peptide complexes is of fundamental importance in biochemistry. We report here that nickel-catalyzed proximity biotinylation and Ru(II)(bpy)(3)(2+)-mediated oxidative crosslinking can be used to measure the equilibrium dissociation constant and stoichiometry of protein complexes. Only small amounts of protein are required, neither of the binding partners must be immobilized on a surface, and no special instrumentation is necessary. This chemistry should provide a useful complement to existing methods for the analysis of protein-protein and protein-peptide interactions.  相似文献   

4.
Identifying the interface of protein complexes can represent a difficult task in structural biology. Here, we report a method for the fast mapping of interfaces of protein complexes by NMR without the need for the assignments of the proteins involved.  相似文献   

5.
A novel mass spectrometry-based methodology using electrospray ionization (ESI) is described for the detection of protein-protein [interferon (IFN)-γ dimer] and protein-ligand [ras-guanosine diphosphate (GDP)] noncovalent interactions. The method utilizes ESI from aqueous solution at appropriate pH. The presence of the noncovalent complex of the IFN-γ dimer was confirmed by the observed average molecular weight of 33,819 Da. The key to the detection of the IFN-γ dimer is the use of an alkaline solution (pH ≈ 9) for sample preparation and for mass spectrornetry analysis. The effect of the declustering energy in the region of the ion sampling orifice and focusing quadrupole on the preservation of the gas-phase noncovalent complex (IFN-γ dimer) was also studied. The effect of the declustering energy on complex dissociation was further extended to probe the noncovalent protein-ligand association of ras-GDP. It was found that little energy is required to dissociate the IFN-γ dimer, whereas a substantial amount of energy is required to dissociate the gas-phase ras-GDP complex.  相似文献   

6.
We report a single-molecule fluorescence resonance energy transfer (FRET) and polarization study of conformational dynamics of calmodulin (CaM) interacting with a target peptide, C28W of a 28 amino acid oligomer. The C28W peptide represents the essential binding sequence domain of the Ca-ATPase protein interacting with CaM, which is important in cellular signaling for the regulation of energy in metabolism. However, the mechanism of the CaM/C28W recognition complex formation is still unclear. The amino-terminal (N-terminal) domain of the CaM was labeled with a fluorescein-based arsenical hairpin binder (FlAsH) that enables our unambiguous probing of the CaM N-terminal target-binding domain motions on a millisecond time scale without convolution of the probe-dye random motions. By analyzing the distribution of FRET efficiency between FlAsH labeled CaM and Texas Red labeled C28W and the polarization fluctuation dynamics and distributions of the CaM N-terminal domain, we reveal binding-unbinding motions of the N-terminal domain of the CaM in CaM/C28W complexes, which is strong evidence of a two-state binding interaction of CaM-mediated cell signaling.  相似文献   

7.
The characterization of interactions between membrane proteins as they take place within the lipid bilayer poses a technical challenge, which is currently very difficult and, in many cases, impossible to overcome. The recent development of a method based in the combination two-color fluorescence cross-correlation spectroscopy with scanning of the focal volume allows the detection and quantification of interactions between biomolecules inserted in biological membranes. This powerful strategy has allowed the quantitative analysis of diverse systems, such as the association between proteins of the Bcl-2 family involved in apoptosis regulation or the binding between a growth factor and its receptor during signaling. Here, we review the last developments to quantify protein/protein interactions in lipid membranes and focus on the use of fluorescence-correlation-spectroscopy approaches for that purpose.  相似文献   

8.
The folding of many proteins can begin during biosynthesis on the ribosome and can be modulated by the ribosome itself. Such perturbations are generally believed to be mediated through interactions between the nascent chain and the ribosome surface, but despite recent progress in characterising interactions of unfolded states with the ribosome, and their impact on the initiation of co-translational folding, a complete quantitative analysis of interactions across both folded and unfolded states of a nascent chain has yet to be realised. Here we apply solution-state NMR spectroscopy to measure transverse proton relaxation rates for methyl groups in folded ribosome–nascent chain complexes of the FLN5 filamin domain. We observe substantial increases in relaxation rates for the nascent chain relative to the isolated domain, which can be related to changes in effective rotational correlation times using measurements of relaxation and cross-correlated relaxation in the isolated domain. Using this approach, we can identify interactions between the nascent chain and the ribosome surface, driven predominantly by electrostatics, and by measuring the change in these interactions as the subsequent FLN6 domain emerges, we may deduce their impact on the free energy landscapes associated with the co-translational folding process.

NMR measurements of methyl relaxation in translationally-arrested ribosome–nascent chain complexes probe the dynamics of folded nascent polypeptides emerging during biosynthesis and quantify their interaction with the ribosome surface.  相似文献   

9.
We present a theoretical and numerical analysis of the vibrational coupling between isotope-edited amino acids in protein dimers. Depending on the presence and magnitude of coupling between 13Calpha=O peptide bond oscillators, characteristic level splittings of vibrational eigenstates are predicted. For the example of the Gramicidin A ion channel polypeptide, we observe typical IR fingerprints for the head-to-head and the antiparallel double-helical conformation of the dimer. We suggest that these findings can be used to clearly identify the structure of polypeptide aggregates using a particularly simple isotope substitution pattern.  相似文献   

10.
A novel nuclear magnetic resonance (NMR) strategy based on labeling with lanthanides achieves rapid determinations of accurate three-dimensional (3D) structures of protein-protein complexes. The method employs pseudocontact shifts (PCS) induced by a site-specifically bound lanthanide ion to anchor the coordinate system of the magnetic susceptibility tensor in the molecular frames of the two molecules. Simple superposition of the tensors detected in the two protein molecules brings them together in a 3D model of the protein-protein complex. The method is demonstrated with the 30 kDa complex between two subunits of Escherichia coli polymerase III, comprising the N-terminal domain of the exonuclease subunit epsilon and the subunit theta. The 3D structures of the individual molecules were docked based on a limited number of PCS observed in 2D 15N-heteronuclear single quantum coherence spectra. Degeneracies in the mutual orientation of the protein structures were resolved by the use of two different lanthanide ions, Dy3+ and Er3+.  相似文献   

11.
The lack of understanding of the structural and electronic factors that affect the often difficult to observe germanium resonance has been a major deterrent to studies of bonding interactions at germanium. We utilized the symmetrical system GeR 4 to determine what structural factors inherent in the R group affect the shape and position of the (73)Ge resonance. The (73)Ge resonances of symmetrical tetrakis germanium compounds of the type GeR 4 (R = alkyl, aryl), GeX 4 (X = F, Cl, Br, I), Ge(OR) 4 (R = alkyl, methoxyalkyl, dimethylaminoalkyl), Ge(NR 2) 4 (R = alkyl), and Ge(SR) 4 (R = alkyl, dimethylaminoalkyl) were examined for evidence of intramolecular coordination. Although many of these compounds have sharp resonances due to idealized tetrahedral symmetry with relatively long relaxation times, others have broad or no observable resonances due to fast quadrupolar relaxation. We hypothesize that the perturbation of symmetry by even weak Lewis interactions or conformational changes causes broadening of the resonance before the interaction can become sufficiently strong to cause the significant low-frequency shift generally associated with hypercoordination in most nuclei. Intermolecular coordination to GeCl 4 is believed to be responsible for the low-frequency shifts in (73)Ge resonances and the associated changes in peak widths in mixtures with bases such as tributylphosphine oxide (TBPO) and triethylphosphine oxide (TEPO). Adduct formation with these bases is confirmed by broad (31)P resonances that are resolved into five peaks at -40 degrees C. The exchange-broadened resonances due to the 1:1 and 1:2 TEPO adducts are also observed at -40 degrees C in the (73)Ge spectrum. Thus, relatively strong bonding to the germanium in GeCl 4 results in both low-frequency shifts and broadening of the resonance. The broad (73)Ge resonances that occur in some compounds may be in part due to exchange as well as quadrupolar relaxation.  相似文献   

12.
This paper describes an automated method for sequence-specific NMR assignment of the aliphatic resonances of protein side chains in small- and medium-sized globular proteins in aqueous solution. The method requires the recording of a five-dimensional (5D) automated projection spectroscopy (APSY-) NMR experiment and the subsequent analysis of the APSY peak list with the algorithm ALASCA (Algorithm for local and linear assignment of side chains from APSY data). The 5D APSY-HC(CC-TOCSY)CONH experiment yields 5D chemical shift correlations of aliphatic side chain C-H moieties with the backbone atoms H(N), N, and C'. A simultaneous variation of the TOCSY mixing times and the projection angles in this APSY-type TOCSY experiment gives access to all aliphatic C-H moieties in the 20 proteinogenic amino acids. The correlation peak list resulting from the 5D APSY-HC(CC-TOCSY)CONH experiment together with the backbone assignment of the protein under study is the sole input for the algorithm ALASCA that assigns carbon and proton resonances of protein side chains. The algorithm is described, and it is shown that the aliphatic parts of 17 of the 20 common amino acid side chains are assigned unambiguously, whereas the remaining three amino acids are assigned with a certainty of above 95%. The overall feasibility of the approach is demonstrated with the globular 116-residue protein TM1290, for which reference assignments are known. For this protein, 97% of the expected side chain carbon atoms and 87% of the expected side chain protons were detected with the 5D APSY-HC(CC-TOCSY)CONH experiment in 24 h of spectrometer time, and all these resonances were correctly assigned by ALASCA. Based on the experience with TM1290, we expect that the approach presented in this work is routinely applicable to globular proteins with sizes up to at least 120 amino acids.  相似文献   

13.
A novel method is proposed for the detection and quantification of protein-protein interactions in solution. In this approach, one protein binding partner is tagged with a ligand binding domain, and protein-protein interaction is monitored via changes in the NMR relaxation of a reporter ligand which reversibly binds to the ligand binding domain. The particular benefit of the method is that only minute amounts of protein material and no isotope labeling are required. Its ease of implementation and the high-throughput capabilities make the method an attractive complement to existing proteomic methodology.  相似文献   

14.
Probing paeonol-pluronic polymer interactions by 1H NMR spectroscopy   总被引:1,自引:0,他引:1  
By using a combination of 1H NMR spectroscopy, two-dimensional heteronuclear single-quantum coherence-resolved (1)H{(13)C} and homonuclear rotating-frame Overhauser enhancement NMR correlation experiments with diffusion ordered spectroscopy (DOSY), the location and distribution of a hydrophobic drug, paeonol, have been established with respect to the methyl groups of the poly(ethylene oxide)-poly(propylene oxide) -poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymer. The interaction between them is adjustable according to the different temperature-dependent hydrophilicities or hydrophobicities of the triblock copolymer components. On the other hand, such interactions influence the self-assembly properties of the block copolymer amphiphiles in solution. The amount of anhydrous methyl groups of PPO segments shows an increase with increasing paeonol concentration. It was also demonstrated that the shell-crosslinking of the Pluronic polymer has an effect in increasing the amount of anhydrous methyl groups and thus increasing the hydrophobicity of Pluronic micelles. This might be the deeper reason underlying the increase in drug-loading capacity and prolongation in release time of Pluronic micelles for drug delivery after the shell-crosslinking. Changes in self-diffusion coefficients of paeonol with varying copolymer concentrations and types were also determined by the diffusion-based NMR DOSY technique, and values of K(a), DeltaG, and n were calculated.  相似文献   

15.
The use of 2H NMR spectroscopy as a tool for the analysis of enantiomeric purity is reported. Enantiopure isotopically chiral substrates bearing a monodeuterated methylene unit were prepared; introduction of an additional asymmetric center leads to diastereomers which can be distinguished by 2H NMR on a standard spectrometer. The assays allow for simple semiquantitative analysis of asymmetric transformations.  相似文献   

16.
Water-macromolecules and ligand-macromolecules interactions were investigated considering the effects induced by the presence of a macromolecule on both the water and the ligand NMR selective (R1SE) and non-selective (R1NS) spin-lattice relaxation rates. The results obtained from the solvent studies were used to describe the solvent dynamics at the macromolecule-solvent interface. On the other hand, ligand R1SE and (R1NS) analysis allowed the definition of the “affinity index”, [A]LT, an index related to the extent of the macromolecule-ligand recognition process.  相似文献   

17.
We demonstrate the detection and characterization of ligand binding to viruses via NMR. To illustrate the methodology, the interaction of an antiviral compound with human rhinovirus serotype 2 (HRV2) was investigated. Specific interaction of a capsid-binding inhibitor and native HRV2 was monitored utilizing saturation transfer difference (STD) NMR. STD NMR experiments at atomic resolution allowed those regions of the ligand that are involved in the interaction with the virus to be determined. The approach allows for (i) the fast and robust assessment of binding, (ii) the determination of the ligand binding epitope at atomic resolution without the necessity to crystallize virus-ligand complexes, and (iii) the reuse of the virus in subsequent assays. This methodology enables one to easily identify binding of drugs, peptides, and receptor or antibody fragments to the viral capsid.  相似文献   

18.
Intermolecular nuclear Overhauser effects (NOEs) between the integral outer membrane protein OmpX from Escherichia coli and small bicelles of dihexanoyl phosphatidylcholine (DHPC) and dimyristoyl phosphatidylcholine (DMPC) give insights into protein-lipid interactions. Intermolecular NOEs between hydrophobic tails of lipid and protein in the bicelles cover the surface area of OmpX forming a continuous cylindric jacket of approximately 2.7 nm in height. These NOEs originate only from DMPC molecules, and no NOEs from DHPC are observed. Further, these NOEs are mainly from methylene groups of the hydrophobic tails of DMPC, and only a handful of NOEs arise from methyl groups of the hydrophobic tails. The observed contacts indicate that the hydrophobic tails of DMPC are oriented parallel to the surface of OmpX and thus DMPC molecules form a bilayer in the vicinity of the protein. Thus, a bilayer exists in the small bicelles not only in the absence of but also in the presence of a membrane protein. In addition, the number of NOEs between the polar head groups of lipid molecules and protein is increased in the bicelles compared with those in micelles. This observation may be due to the closely packed head groups of the bilayer. Moreover, irregularity of hydrophobic interactions in the middle of the bilayer environment was observed. This observation together with the interactions between polar head groups and proteins gives a possible rationale for structural and functional differences of membrane proteins solubilized in micelles and in bilayer systems and hints at structural differences between protein-free and protein-loaded bilayers.  相似文献   

19.
20.
We present a robust solid-state NMR approach for the accurate determination of molecular interfaces in insoluble and noncrystalline protein-protein complexes. The method relies on the measurement of intermolecular (13)C-(13)C distances in mixtures of [1-(13)C]glucose- and [2-(13)C]glucose-labeled proteins. We have applied this method to Parkinson's disease-associated α-synuclein fibrils and found that they are stacked in a parallel in-register arrangement. Additionally, intermolecular distance restraints for the structure determination of the fibrils at atomic resolution were measured.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号