首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 741 毫秒
1.
Mixtures of the anionic surfactants sodium dodecyl sulfate (SDS) and sodium dodecanoate (SDoD) were investigated regarding their ability to bind to a hydrophilic nonionic polymer, polyethylene oxide (PEO). By electrical conductivity measurements, the parameters with respect to the onsets of surfactant aggregation were determined in the presence of 0.06 M PEO (critical aggregation concentration) and in its absence (critical micelle concentration). It was found that both plots of these parameters for the multicomponent mixtures against molar fraction of SDoD showed an ideal mixing behavior. The same technique was used to estimate the degree of ionization as a fundamental parameter relating to the interfacial composition of mixed aggregates. In addition, in order to monitor changes in polymer-surfactant structures, we used steady-state quenching fluorescence measurements to characterize the sizes of PEO-SDS/SDoD complexes at different compositions of the complex mixture. Copyright 1999 Academic Press.  相似文献   

2.
The aqueous solution of poly(ethylene oxide) (PEO) in the presence of different concentrations of sodium dodecyl sulfate (SDS) was examined by laser light scattering and isothermal titration calorimetric techniques. A small fraction of PEO aggregates were found to coexist with unimeric PEO chains in dilute solution. The presence of monovalent salt does not alter the hydrodynamic properties of PEO in aqueous solution. Addition of a monovalent anionic surfactant, such as SDS, induces cooperative binding of surfactant monomers to PEO backbones at SDS concentrations ranging from 4.0 mM (critical aggregation concentration) to 16.5 mM (saturation concentration). The hydrodynamic radius of PEO unimers decreases initially and then increases with SDS concentration, resulting from the structural reorganization of the PEO/SDS complex. Beyond the saturation concentration, the hydrodynamic radii of PEO/SDS complex are independent of SDS concentration.  相似文献   

3.
The interaction between the nonionic polymer poly(ethylene oxide) (PEO) of molecular weight 20,000 and surfactants of various types [sodium dodecyl sulfate (SDS), dodecyl trimethylammonium bromide, octyl beta-D-glucoside, and potassium laurate] has been investigated in an aqueous solution at 25 degrees C by 1H NMR pulsed-gradient spin-echo self-diffusion techniques. The SDS/PEO study was further complemented by component-resolved 1H NMR-based studies of the electrophoretic mobility of PEO and the alkyl part of SDS under the same measurement conditions. Through such combined studies, a much more complete picture of the binding and aggregation processes becomes accessible.  相似文献   

4.
顺磁共振和紫外光谱法研究SDS-PEO体系的相互作用   总被引:2,自引:0,他引:2  
合成更疏水的自旋探针4 羰基 2,2,6,6 四甲基哌啶氮氧自由基 2,4 二硝基苯腙.用顺磁共振(ESR)和紫外光谱法研究了十二烷基硫酸钠(SDS) 0.5 %(w,质量分数)聚氧乙烯(PEO)体系的分子间相互作用. ESR结果表明,此水溶液体系的微极性随SDS浓度增大而减小,并且SDS与PEO聚集体具有更加紧密的堆积结构使其结合处具有较大的微粘性, SDS与PEO间的相互作用导致PEO分子链伸展. UV表明自旋探针分子可能靠近胶束的表面存在, 2,4 二硝基苯肼基团可能位于靠近SDS的硫酸根基团,定向于SDS胶束的表面,氮氧自由基基团短距离渗透到SDS胶束的碳氢核.  相似文献   

5.
表面活性剂/聚合物体系具有多种工业用途,尤其在提高石油采收率方面具有广泛的应用前景。另外,此类体系中存在复杂而特殊的相互作用.因此,聚合物/表面活性剂体系物理化学性质的研究具有十分重要的理论和实际意义.文献中对此方面的研究已有不少报导[1-6].1967年,Jones  相似文献   

6.
The swelling behavior of poly(ethylene oxide) (PEO) gels in aqueous solutions of sodium dodecyl sulfate (SDS) with and without NaCl was investigated. In the absence of NaCl, PEO gels with different degrees of cross-linking began to swell from a concentration lower than the critical micelle concentration (cmc) of SDS, then showed sigmoidal enhancements of swelling in a higher SDS concentration region until the degrees of swelling reached maximum values. The SDS concentration at which the swelling began to appear was in reasonable agreement with the critical aggregation concentration (cac) value reported for the aqueous PEO system. For the cases where NaCl was present, the swelling behavior of PEO gel was different from that when NaCl was absent in the following way. The concentrations where the swelling begins to appear, and hence those where the degree of swelling rises steeply, decreased with an increase in NaCl concentration. The ultimate degrees of swelling at higher concentration regions also decreased with an increase in the NaCl concentration. The lowering of the SDS concentrations at which the PEO gel began to swell is in line with the decreases in the cmc of SDS solutions containing NaCl and also with the decreases in the cac of PEO solution. Electronic Publication  相似文献   

7.
The dynamic adsorption of polymer/surfactant mixtures containing poly(ethylene oxide) (PEO) with either tetradecyltrimethylammonium bromide (C(14)TAB) or sodium dodecyl sulfate (SDS) has been studied at the expanding air/water interface created by an overflowing cylinder, which has a surface age of 0.1-1 s. The composition of the adsorption layer is obtained by a new approach that co-models data obtained from ellipsometry and only one isotopic contrast from neutron reflectometry (NR) without the need for any deuterated polymer. The precision and accuracy of the polymer surface excess obtained matches the levels achieved from NR measurements of different isotopic contrasts involving deuterated polymer, and requires much less neutron beamtime. The PEO concentration was fixed at 100 ppm and the electrolyte concentration at 0.1 M while the surfactant concentration was varied over three orders of magnitude. For both systems, at low bulk surfactant concentrations, adsorption of the polymer is diffusion-controlled while surfactant adsorption is under mixed kinetic/diffusion control. Adsorption of PEO is inhibited once the surfactant coverage exceeds 2 μmol m(-2). For PEO/C(14)TAB, polymer adsorption drops abruptly to zero over a narrow range of surfactant concentration. For PEO/SDS, inhibition of polymer adsorption is much more gradual, and a small amount remains adsorbed even at bulk surfactant concentrations above the cmc. The difference in behavior of the two mixtures is ascribed to favorable interactions between the PEO and SDS in the bulk solution and at the surface.  相似文献   

8.
The interaction of poly(ethylene oxide)(PEO)with the ionic surfactants,sodium dodecylsulfate(SDS)and cetyltrimethylammonium chloride(CTAC)respectively,in aqueous solutions containing a certain concentration of NH_4Cl, is studied by the viscosity measurement.It has been found that the ion-dipole interaction between PEO and ionic surfactants is changed considerably by the organic salt.For anionic suffactant of SDS,the addition of NH_4Cl into solution strengthens the interaction between PEO and the headgrou...  相似文献   

9.
The micelles of two poly(ethylene oxide)‐poly(propylene oxide)‐poly(ethylene oxide) (PEO‐PPO‐PEO) block copolymers, P123 and F127 (same mol wt of PPO but different % PEO) in aqueous solution in the absence and presence of salts as well as ionic surfactants were mainly examined by dynamic light scattering (DLS). The study is further supported by cloud point and viscosity measurements. The change in cloud point (CP), as well as the size of micelles in aqueous solution in presence of salts obeys the Hofmeister lyotropic series. Addition of both cationic cetylpyridinium chloride (CPC) and anionic sodium dodecylsulfate (SDS) surfactants in the aqueous solution of P123 show initial decrease of micellar size from 20 nm to nearly 7 nm and then increasing with a double relaxation mode, further in the presence of NaCl this double relaxation mode vanishes. The effect of surfactant on F127, which has much bigger hydrophilic part is different than P123 and have no double relaxation. The relaxation time distributions is obtained using the Laplace inversion routine REPES. Two relaxation modes for P123 are explained on the bases of Pluronic rich mixed micelles containing ionic surfactants and the other smaller, predominantly surfactant rich micelles domains.  相似文献   

10.
We have performed atomistic molecular dynamics simulations of an anionic sodium dodecyl sulfate (SDS) micelle and a nonionic poly(ethylene oxide) (PEO) polymer in aqueous solution. The micelle consisted of 60 surfactant molecules, and the polymer chain lengths varied from 20 to 40 monomers. The force field parameters for PEO were adjusted by using 1,2-dimethoxymethane (DME) as a model compound and matching its hydration enthalpy and conformational behavior to experiment. Excellent agreement with previous experimental and simulation work was obtained through these modifications. The simulated scaling behavior of the PEO radius of gyration was also in close agreement with experimental results. The SDS-PEO simulations show that the polymer resides on the micelle surface and at the hydrocarbon-water interface, leading to a selective reduction in the hydrophobic contribution to the solvent-accessible surface area of the micelle. The association is mainly driven by hydrophobic interactions between the polymer and surfactant tails, while the interaction between the polymer and sulfate headgroups on the micelle surface is weak. The 40-monomer chain is mostly wrapped around the micelle, and nearly 90% of the monomers are adsorbed at low PEO concentration. Simulations were also performed with multiple 20-monomer chains, and gradual addition of polymer indicates that about 120 monomers are required to saturate the micelle surface. The stoichiometry of the resulting complex is in close agreement with experimental results, and the commonly accepted "beaded necklace" structure of the SDS-PEO complex is recovered by our simulations.  相似文献   

11.
The interaction of poly(ethylene oxide)(PEO)with the ionic surfactants,sodium dodecylsulfate(SDS)and cetyltrimethylammonium chloride(CTAC)respectively,in aqueous solutions containing a certain concentration of NH4Cl,is studied by the viscosity measurement.It has been found that the ion-dipole interaction between PEO and ionic surfactants is changed considerably by the organic salt.For anionic surfactant of SDS,the addition of NH4Cl into solution strengthens the interaction between PEO and the headgroup of SDS.On the other hand,for cationic surfactant of CTAC,the interaction between PEO and the headgroup of CTAC is screened significantly by NH4Cl dissolved in solution.These findings may potentially be attributed to the negative property of the oxygen group of the PEO chain.In the presence of NH4Cl,the cationic ions of the organic salt bind to the oxygen group of the PEO chain so that PEO can be referred to as a pseudopolyelectrolyte in solution.  相似文献   

12.
This work investigates the elongational flow of aqueous solutions of mixtures of a high-molecular-weight poly(ethylene oxide) (PEO) and sodium dodecyl sulfate (SDS). The formation of micellar aggregates of SDS along the PEO chain results in an increase in the strength of the extension thickening of the PEO solutions. This is especially pronounced under conditions in which the PEO molecules form transient entanglements in the flow field. The minimum PEO concentration required to form intermolecular entanglements is substantially reduced in the presence of micellar aggregates. This effect becomes quantitatively less important in solutions with NaCl, which suggests PEO coil contraction due to electrostatic screening of micellar aggregates. However, once extension thickening starts in the presence of NaCl, the growth of pressure drop is more abrupt than without salt, which suggests stronger interactions between PEO coils with attached aggregates. The critical aggregation concentrations of PEO/SDS and PEO/SDS/NaCl solutions agree with those reported in the literature, which were obtained by means of different experimental techniques. However, the saturation of the surfactant effect is attained at lower surfactant concentrations than the polymer saturation point previously reported. This might reflect a low sensitivity of the extension thickening effect to the amount of surfactant bound to the polymerchain as the saturation point is approached. Copyright 2001 Academic Press.  相似文献   

13.
A thermodynamic analysis of the interaction between fourteen different molar mass poly(ethylene oxide)s (PEO) and sodium dodecyl sulfate (SDS) based on the measured surfactant-binding isotherms is given. The surfactant-binding isotherms were determined by the potentiometric method in the presence of 0.1 M inert electrolyte (NaBr). It was found that there is no PEO/SDS complex formation if M(PEO) < 1000. In the molecular weight range 1000 < M(PEO) < 8000, the critical aggregation concentration (cac) and the surfactant aggregation number are decreasing as the polymer molecular weight increases. The saturated bound surfactant amount is proportional to the number concentration of the polymer in this molecular weight range. If M(PEO) exceeds approximately 8000, the cac does not depend on the polymer molar mass, and the saturated bound amount of the surfactant becomes proportional to the mass concentration of the polymer. It was also observed that independently of the polymer molecular weight the surfactant aggregation number increases as the equilibrium surfactant monomer concentration increases from the cac to the critical micellar concentration (cmc). Finally, it was demonstrated that only one polymer molecule is involved in the complex formation independently of the polymer molecular weight.  相似文献   

14.
Although polyethylene oxide (PEO) offers several advantages as a sieving polymer in SDS capillary polymer electrophoresis (SDS-CPE), solution properties of PEO cause deterioration in the electrophoresis because PEO in solution aggregates itself, degrades into smaller pieces, and forms polymer-micelle complexes with SDS. We examined protein separation on SDS-CPE with PEO as a sieving matrix in four individual buffer solutions: Tris-CHES, Tris-Gly, Tris-Tricine, and Tris-HCl buffers. The solution properties of PEO as a sieving matrix in those buffers were examined by dynamic light scattering (DLS) and by surface tension. Preferential SDS adsorption onto PEO disturbed protein-SDS complexation and impaired the protein separation efficiency. Substantial adsorption of SDS to PEO was particularly observed in Tris-Gly buffer. The Tris-CHES buffer prevented SDS from adsorbing onto the PEO. Only Tris-CHES buffer achieved separation of six proteins. This study demonstrated efficient protein separation on SDS-CPE with PEO.  相似文献   

15.
A low charge density polyelectrolyte with a high graft density of 45 units long poly(ethylene oxide) side-chains has been synthesized. In this comb polymer, denoted PEO(45)MEMA:METAC-2, 2 mol% of the repeating methacrylate units in the polymer backbone carry a permanent positive charge and the remaining 98 mol% a 45 unit long PEO side-chain. Here we describe the solution conformation of this polymer and its association with an anionic surfactant, sodium dodecylsulfate, SDS. It will be shown that the polymer can be viewed as a stiff rod with a cross-section radius of gyration of 29 A. The cross section of the rod contracts with increasing temperature due to decreased solvency of the PEO side-chains. The anionic surfactant associates to a significant degree with PEO(45)MEMA:METAC-2 to form soluble complexes at all stoichiometries. A cooperative association is observed as the free SDS concentration approaches 7 mM. At saturation the number of SDS molecules associated with the polymer amounts to 10 for each PEO side-chain. Two distinct populations of associated surfactants are observed, one is suggested to be molecularly distributed over the comb polymer and the other constitutes small micellar-like structures at the periphery of the aggregate. These conclusions are reached based on results from small-angle neutron scattering, static light scattering, NMR, and surface tension measurements.  相似文献   

16.
The micellization of sodium dodecyl sulfate (SDS) in different glycol-water solvent mixtures was studied using the isothermal titration calorimetric (ITC) technique. At the same time, microcalorimetric titrations were also carried out to monitor the binding interaction of SDS and poly(ethylene oxide) (PEO) in the presence of different cosolvents. The demicellization of SDS in mixtures of water and cosolvents is different from that in water due to the reduction in solvent polarity and charge interaction of surfactants. The critical micelle concentration (cmc) first decreases with the addition of a small amount of cosolvents and then increases at higher cosolvent concentrations. The thermodynamics of surfactant micellization can be analyzed using the solubility parameters of solvent mixtures. For the binding interaction between SDS and PEO in different solvent mixtures, the dehydration process at low SDS concentrations is replaced by the chain solubilization process with decreasing solvent polarity. With further reduction in the solvent polarity, the binding interaction between SDS and PEO becomes weak and no aggregates can be formed beyond a certain glycol concentration. The binding interaction between SDS and PEO in different solvent mixtures was analyzed and ascribed to the effects of PEO solubility and hydrophobicity of SDS.  相似文献   

17.
Interactions between a high molecular weight poly(ethylene oxide) (PEO) and the anionic surfactant sodium dodecyl benzene sulfonate (SDBS) in aqueous solutions were investigated by shear and extensional rheometry. Results for mixtures between PEO and sodium dodecyl sulfate (SDS) are also presented for comparison purposes. Addition of anionic surfactants to PEO solutions above the critical aggregation concentration (CAC), at which micellar aggregates attach to the polymer chain, results in an increase in shear viscosity due to PEO coil expansion, and a strengthening of interchain interactions. In extensional flows, these interactions result in a decrease of the critical shear rate for the onset of the characteristic extension thickening of the PEO solutions that is due to transient entanglements of polymer molecules. The relaxation times associated with these transient entanglements are not directly proportional to the shear viscosity of the solutions, but rather vary more rapidly with surfactant concentration. In the presence of an electrolyte, coil contraction results in lower shear viscosities and a decrease in the extension thickening effects at surfactant concentrations just beyond the CAC. The relaxation times associated with transient entanglement reach a minimum at the same surfactant concentration as the shear viscosity, which indicates that coil contraction is responsible for the observed effects in both types of flow. However, the increase in extensional-flow entanglement relaxation times is much more abrupt than the decrease in shear viscosity. All these results point to a greater sensitivity of extensional flows on the molecular conformation of PEO/surfactant complexes.  相似文献   

18.
The aggregation of sodium dodecyl sulfonate (AS) in aqueous solution containing various amounts of poly(ethylene oxide) (PEO) has been investigated by different experimental techniques. The experimental techniques include surface tension, conductivity, viscosity, electron spin resonance (ESR) and nuclear magnetic resonance (NMR). The critical aggregate concentration of AS on polymer strands as well as the concentration where the polymer becomes saturated with surfactant has been determined. Both ESR and NMR results indicate that the AS–PEO complex forms a more “open” structure and that PEO may penetrate into the interior of the micelles. Received: 22 October 1998 Accepted in revised form: 1 April 1999  相似文献   

19.
Photoisomerization of merocyanine 540 (MC540) in a polymer-surfactant aggregate is studied using picosecond time resolved emission spectroscopy. The aggregate consists of the polymer, poly(vinylpyrrolidone) (PVP) and the surfactant, sodium dodecyl sulphate (SDS). With increase in the concentration of SDS in an aqueous solution of MC540 containing PVP, the emission quantum yield and lifetime of MC540 increase markedly. This indicates marked retardation in the nonradiative photoisomerization process of MC540, when it binds to the polymer-surfactant aggregate. The critical association concentration of SDS for binding to PVP has been found to be 0.5 mM. This is about 16 times lower than the CMC of SDS in pure water (8 mM).  相似文献   

20.
Morphological change of a micelle of poly(styrene)-b-poly(2-vinylpyridine)-b-poly(ethylene oxide) (PS-PVP-PEO) polymer was induced by binding sodium dodecyl sulfate (SDS) to the PVP block in acidic aqueous solutions. The change in the size of SDS/PS-PVP-PEO complexes was detected by dynamic light scattering measurements and atomic force microscopy, and the binding of SDS was confirmed by zeta-potential measurements. When the micelle was free from SDS in acidic aqueous solutions, the hydrodynamic diameter of the micelle was 216 nm, reflecting the extended conformation of the PVP block due to the repulsion between protonated pyridine units. As the cationic PVP block was electrically neutralized with anionic SDS, the diameter was gradually reduced concomitant with the decrease in zeta-potential and finally reached 175 nm when the PVP block was completely neutralized. The decrease in the diameter shows the morphological change of the PVP block from extended to shrunken forms. Further addition of SDS did not cause the changes of the diameter nor zeta-potential. This indicates that SDS was not bound to the PS-PVP-PEO polymer after the PVP block was fully neutralized and that the hydrophobic binding of SDS to the polymer was negligible due to the low concentration of SDS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号