共查询到20条相似文献,搜索用时 0 毫秒
1.
Controlling quantum discord dynamics in cavity QED systems by applying a classical driving field with phase decoherence 下载免费PDF全文
We investigate a two-level atom interacting with a quantized cavity field and a classical driving field in the presence of phase decoherence and find that a stationary quantum discord can arise in the interaction of the atom and cavity field as the time turns to infinity.We also find that the stationary quantum discord can be increased by applying a classical driving field.Furthermore,we explore the quantum discord dynamics of two identical non-interacting two-level atoms independently interacting with a quantized cavity field and a classical driving field in the presence of phase decoherence.Results show that the quantum discord between two atoms is more robust than entanglement under phase decoherence and the classical driving field can help to improve the amount of quantum discord of the two atoms. 相似文献
2.
We study the quantum discord dynamics of two noninteracting qubits that are, respectively, subject to classical noise. The results show that the dynamics of quantum discord are dependent on both the coupling between the qubits and classical noise, and the average switching rate of the classical noise. In the weak-coupling Markovian region, quantum discord exhibits exponent decay without revival, and can be well protected by increasing the average classical noise switching rate. While in the strong-coupling non-Markovian region, quantum discord reveals slowly decayed oscillations with quick revival by decreasing the average switching rate of the classical noise. Thus, our results provide a new method of protecting quantum discord in a two-qubit system by controlling the coupling between the qubits and classical noise, and the average switching rate of the classical noise. 相似文献
3.
We study the relationship between the behavior of global quantum correlations and quantum phase transitions in XY model. We find that the two kinds of phase transitions in the studied model can be characterized by the features of global quantum discord (GQD) and the corresponding quantum correlations. We demonstrate that the maximum of the sum of all the nearest neighbor bipartite GQDs is effective and accurate for signaling the Ising quantum phase transition, in contrast, the sudden change of GQD is very suitable for characterizing another phase transition in the XY model. This may shed lights on the study of properties of quantum correlations in different quantum phases. 相似文献
4.
Quantum coherence preservation of atom with a classical driving field under non-Markovian environment 下载免费PDF全文
The exact dynamics of an open quantum system consisting of one qubit driven by a classical driving field is investigated. Our attention is focused on the influences of single-and two-photon excitations on the dynamics of quantum coherence and quantum entanglement. It is shown that the atomic coherence can be improved or even maintained by the classical driving field, the non-Markovian effect, and the atom-reservoir detuning. The interconversion between the atomic coherence and the atom-reservoir entanglement exists and can be controlled by the appropriate conditions. The conservation of coherence for different partitions is explored, and the dynamics of a system with two-photon excitations is different from the case of single-photon excitation. 相似文献
5.
Geometric quantum discord and Berry phase between two charge qubits coupled by a quantum transmission line 下载免费PDF全文
Geometric quantum discord(GQD) and Berry phase between two charge qubits coupled by a quantum transmission line are investigated. We show how GQDs evolve and investigate their dependencies on the parameters of the system.We also calculate the energy and the Berry phase and compare them with GQD, finding that there are close connections between them. 相似文献
6.
J. S. Zhang J. B. Xu Q. Lin 《The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics》2009,51(2):283-288
We investigate the entanglement dynamics of a quantum system consisting of two-level atoms interacting with vacuum or thermal
fields with classical driving fields. We find that the entanglement of the system can be improved by adjusting the classical
driving field. The influence of the classical field and the purity of the initial state on the entanglement sudden death is
also studied. It is shown that the time of entanglement sudden death can be controlled by the classical driving fields. Particularly,
the entanglement sudden death phenomenon will disappear if the classical driving fields are strong enough. 相似文献
7.
本文研究了不同磁场环境下一维Heisenberg XXZ自旋链中两量子比特的热量子失协特性. 在四种不同的磁场环境下: 1) B1=B2=0 (无磁场); 2) B1≠0, B2=0 (磁场只作用于其中一个量子比特); 3) B1=B2 (均匀磁场); 4) B1=-B2 (非均匀磁场), 对分别作用在每个量子比特上的磁场B1和B2对其量子关联的影响作了详细的讨论, 且数值计算和比较了其量子失协和量子纠缠的异同. 结果显示: 在有限温度下, 量子失协相比于量子纠缠更普遍, 且非均匀磁场相比于均匀磁场对量子失协和量子纠缠更有用, 更有利于量子通讯和量子信息处理过程.
关键词:
量子关联
纠缠
量子失协 相似文献
8.
Qi-Liang He 《Optics Communications》2011,284(14):3649-3653
We investigate the influence of nonlinear Kerr-like medium and dipole-dipole interaction on the dynamics of quantum discord in Tavis-Cummings model with phase decoherence. We show that in the resonance case (i) atom-field quantum discord rapidly decays with phase decoherence and doesn't exist the stationary state quantum discord, but the stationary state quantum discord appears if we choose the suitable values of Kerr coefficient χ and dipole-dipole interaction Ω, (ii) the quantum discord of two atoms survives in the stationary state and the amount of stationary state quantum discord could be improved by adjusting the values of χ and Ω. In the non-resonance case, the arbitrary bipartite quantum discord of the system could not be completely destroyed by the phase decoherence and can be improved by applying nonlinear Kerr-like medium and dipole-dipole interaction. 相似文献
9.
Creating unconventional geometric phase gate using squeeze-like operator assisted by strong driving field 下载免费PDF全文
Based on the idea that a squeezing process can be thought of as a
total cumulative effect of a large number of tiny squeezing
processes, we define a squeeze-like operator with a time-dependent
squeeze parameter. Applying this operator to and combining with a
system which includes a two-photon interaction between two atoms and
an initial vacuum cavity field, and resorting to a resonant strong
driving classical field, we obtain an unconventional geometric phase
gate with a shorter gating time. 相似文献
10.
We show that quantum correlations as quantified by quantum discord can characterize quantum phase transitions by exhibiting nontrivial long-range decay as a function of distance in spin systems. This is rather different from the behavior of pairwise entanglement, which is typically short-ranged even in critical systems. In particular, we find a clear change in the decay rate of quantum discord as the system crosses a quantum critical point. We illustrate this phenomenon for first-order, second-order, and infinite-order quantum phase transitions, indicating that pairwise quantum discord is an appealing quantum correlation function for condensed matter systems. 相似文献
11.
应用全量子理论研究了存在相位退相干时单模相干光场与一个二能级原子相互作用系统纠缠的时间演化规律;分别讨论了原子—光场耦合常数、光场的平均光子数以及失谐量的大小对场与原子纠缠的影响.结果表明:随着原子—光场耦合常数的增大和光场平均光子数的增加,系统纠缠的振荡频率都会明显增大.不存在相位退相干时,纠缠的时间演化明显受到失谐量的影响,若选取适当的失谐量,系统的纠缠可长时间保持在最大纠缠态.若考虑相位退相干的影响,则在共振情况下系统纠缠的时间演化是一个逐渐衰减的过程,且最终衰减到零;但若存在适当的失谐量,则在初始一段时间内系统的纠缠也是一个波动幅度逐渐衰减的过程,但随着时间的演化,失谐量抵消了相位退相干的影响,使系统的纠缠不再衰减到零.如果增大失谐量,纠缠在初始一段时间内波动的幅度会相应的减小,并且纠缠趋于稳定的时间也随着失谐量的增大而缩短;当失谐量适当时,系统可保持在纠缠相对较大的状态而无消纠缠态. 相似文献
12.
Conservation issue of pairwise quantum discord and entanglement of two coupled qubits in a two-mode vacuum cavity 下载免费PDF全文
The conservation issues of pairwise quantum discord and entanglement of two qubits coupled to a two-mode vacuum cavity are investigated by considering the dipole-dipole interaction between two qubits.It is found that the sum of the square of the pairwise quantum discords and the sum of the square of the pairwise concurrences are both conserved in the strong dipole-dipole interaction limit.However,in the middle dipole-dipole and weak dipole-dipole interaction limits,the sum of the square of the pairwise concurrences is still conserved while the sum of the square of the pairwise discords is not.The crucial reason for this is that the quantum discords are not equivalent if the measurements are performed on different subsystems in a general situation.So it is very important for quantum computation depending on the quantum discord to select the target performed by the measurements. 相似文献
13.
We study theoretically the geometric phase of a double-quantum-dot(DQD) system measured by a quantum point contact(QPC) in the pure dephasing and dissipative environments, respectively. The results show that in these two environments, the coupling strength between the quantum dots has an enhanced impact on the geometric phase during a quasiperiod. This is due to the fact that the expansion of the width of the tunneling channel connecting the two quantum dots accelerates the oscillations of the electron between the quantum dots and makes the length of the evolution path longer.In addition, there is a notable near-zero region in the geometric phase because the stronger coupling between the system and the QPC freezes the electron in one quantum dot and the solid angle enclosed by the evolution path is approximately zero,which is associated with the quantum Zeno effect. For the pure dephasing environment, the geometric phase is suppressed as the dephasing rate increases which is caused only by the phase damping of the system. In the dissipative environment,the geometric phase is reduced with the increase of the relaxation rate which results from both the energy dissipation and phase damping of the system. Our results are helpful for using the geometric phase to construct the fault-tolerant quantum devices based on quantum dot systems in quantum information. 相似文献
14.
In contrast with entanglement and quantum discord (QD), we investigate the thermal quantum correlation in terms of Schatten one-norm geometric quantum discord (GQD) in the XY spin chain, and analyze their capabilities in detecting the critical point of quantum phase transition. We show that the one-norm GQD can reveal more properties about quantum correlation between two spins, especially for the long-range quantum correlation at finite temperature. Under the influences of site distance, anisotropy and temperature, one-norm GQD and its first derivative make it possible to detect the critical point efficiently for a general XY spin chain. 相似文献
15.
Control of sudden transition between classical and quantum correlations of two strongly driven atoms in dissipative cavities 下载免费PDF全文
We investigate analytically the dynamics of classical and quantum correlations between two strongly driven atoms, each of which is trapped inside a dissipative cavity. It is found that there exists a finite time interval during which the quantum discord initially prepared in the X-type states is not destroyed by the decay of the cavities. The sudden transition between classical correlation and quantum discord is sensitive to the initial-state parameter, the cavity decay rate, and the cavity mode-driving field detuning. Interestingly, we show that the transition time can be prolonged significantly by increasing the degree of the detuning. 相似文献
16.
研究强度相关耦合双Jaynes-Cummings模型中, 两运动原子初始处于最大纠缠态、光场初始处于单模热态时, 强度相关耦合、热光场平均光子数以及原子运动对两原子的纠缠和量子失谐的影响. 结果表明: 考虑强度相关耦合时, 纠缠和量子失谐均出现周期性地消失和回复现象, 并且, 回复以后的纠缠和量子失谐能达到初始值. 腔场温度的升高会加速纠缠和量子失谐的消失. 此外, 原子运动的场模结构参数对该模型中的纠缠和量子失谐影响很大, 其值选择合适时, 两个原子能够自始至终地保持纠缠或量子失谐状态.
关键词:
强度相关耦合
双Jaynes-Cummings模型
纠缠
量子失谐 相似文献
17.
18.
We study the time evolution of classical and quantum correlations for hybrid qubit-qutrit systems in independent and common dephasing environments. Our discussion involves a comparative analysis of the Markovian dynamics of negativity, quantum discord, geometric measure of quantum discord and classical correlation. For the case of independent environments, we have demonstrated the phenomenon of sudden transition between classical and quantum decoherence for qubit-qutrit states. In the common environment case, we have shown that dynamics of quantum and geometric discords might be completely independent of each other for a certain time interval, although they tend to be eventually in accord. 相似文献
19.
We study the quantum discord of the bipartite Heisenberg model with the Dzyaloshinski-Moriya (DM) interaction in thermal equilibrium state and discuss the effect of the DM interaction on the quantum discord. The quantum entanglement of the system is also discussed and compared with quantum discord. Our results show that the quantum discord may reveal more properties of the system than quantum entanglement and the DM interaction may play an important role in the Heisenberg model. 相似文献
20.
The wormhole equations are presented in the presence of tachyon field. Specializing at some values of ω(the ratio of pressure to energy density), we find a family of classical and quantum wormhole solutions. 相似文献