首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We investigate a two-level atom interacting with a quantized cavity field and a classical driving field in the presence of phase decoherence and find that a stationary quantum discord can arise in the interaction of the atom and cavity field as the time turns to infinity.We also find that the stationary quantum discord can be increased by applying a classical driving field.Furthermore,we explore the quantum discord dynamics of two identical non-interacting two-level atoms independently interacting with a quantized cavity field and a classical driving field in the presence of phase decoherence.Results show that the quantum discord between two atoms is more robust than entanglement under phase decoherence and the classical driving field can help to improve the amount of quantum discord of the two atoms.  相似文献   

2.
We investigate the pairwise thermal quantum discord in a three-qubit XXZ model with Dzyaloshinskii-Moriya (DM) interaction. We find that the effects of DM interaction on antiferromagnetic system is distinct from that of ferromagnetic system. The magnetic field supplemented with DM term contribute to enhance the range of quantum discord. It is revealed that the situations where quantum discord fails to indicate a sudden change of groundstate at finite temperature though indicating such a sudden change of groundstate at zero temperature. Dynamics of pairwise thermal quantum discord is considered as well. Thermal quantum discord vanishes in asymptotic limit regardless of its initial values, however, thermal entanglement suddenly disappears in finite time.  相似文献   

3.
The level surfaces of quantum discord for a class of two-qubit states are investigated when the Bloch vectors and are perpendicularly oriented. The geometric objects of tetrahedron T and octahedron O are deformed. The level surfaces of constant discord are formed by three interaction "tubes" along three orthogonal directions. They shrink to the center when the Bloch vectors are increased and are expanded and cut off by the state tetrahedron T when the quantum discord is increased. In the phase damping channel, the quantum discord keeps approximately a constant when the time increases.  相似文献   

4.
颜益营  秦立国  田立君 《中国物理 B》2012,21(10):100304-100304
We study the dynamics of quantum discord and entanglement for two spin qubits coupled to a spin chain with Dzyaloshinsky-Moriya interaction.In the case of a two-qubit with an initial pure state,quantum correlations decay to zero at the critical point of the environment in a very short time.In the case of a two-qubit with initial mixed state,it is found that quantum discord may get maximized due to the quantum critical behavior of the environment,while entanglement vanishes under the same condition.Besides,we observed a sudden transition between classical and quantum decoherence when only a single qubit interacts with the environment.The effects of Dzyaloshinsky-Moriya interaction on quantum correlations are considered in the two cases.The decay of quantum correlations is always strengthened by Dzyaloshinsky-Moriya interaction.  相似文献   

5.
We investigate the pairwise thermal quantum discord in a three-qubit XXZ model with Dzyaloshinskii-Moriya (DM) interaction. We find that the effects of DM interaction on antiferromagnetic system is distinct from that of ferromagnetic system. The magnetic field supplemented with DM term contribute to enhance the range of quantum discord. It is revealed that the situations where quantum discord fails to indicate a sudden change of groundstate at finite temperature though indicating such a sudden change of groundstate at zero temperature. Dynamics of pairwise thermal quantum discord is considered as well. Thermal quantum discord vanishes in asymptotic limit regardless of its initial values, however, thermal entanglement suddenly disappears in finite time.  相似文献   

6.
The non-Markovian decoherence of quantum and classical correlationsis analytically obtained when two qubits are asymmetrically subjected to the bit flip channel and phase flip channel. For one class of initial mixed states, quantum correlations quantified by quantum discord decay synchronously with classical correlations. The discovery that the decaying rates of quantum and classical correlations suddenly change at the characteristic time is physically interpreted by the distance from quantum state to the closest classical states. In a large time interval, quantum correlations are greater than classical correlations. The quantum and classical correlations can be preserved over a longer period of time via the kernel characterizing the environment memory effects.  相似文献   

7.
Taking into account the intrinsic decoherence,we have investigated quantum correlations in a two-qubit Heisenberg XX model when a nonuniform magnetic field is included.We compare entanglement measured by entanglement of formation,quantum discord and measurement-induced measurement(MID)and illustrate their diferent characteristics.Quantum discord and MID show the same features and always exist even though there is no entanglement in the long time limit.In the time evolution,quantum discord could be generated or enhanced to the stable value,while MID just decreases to the stable value.  相似文献   

8.
    
Taking into account the intrinsic decoherence, we have investigated quantum correlations in a two-qubit Heisenberg XX model when a nonuniform magnetic field is included. We compare entanglement measured by entanglement of formation, quantum discord and measurement-induced measurement (MID) and illustrate their different characteristics. Quantum discord and MID show the same features and always exist even though there is no entanglement in the long time limit. In the time evolution, quantum discord could be generated or enhanced to the stable value, while MID just decreases to the stable value.  相似文献   

9.
    
The dynamics of entanglement and quantum discord(QD) between two two-level atoms interacting with two dissipative coupled cavities in the presence of initial atom-cavity correlations is investigated. In comparison with the result of the initial factorized state, we show that the initial state contained quantum correlation of atom-cavity is most robust against the dissipative environment, and the initial atom-cavity correlations, especially the quantum correlation, play a constructive role in the generation of atomic entanglement and QD.Simultaneously, the comparison between Markovian and non-Markovian dynamics, and the influences of inter-cavity hopping rate are also taken into account and analyzed.  相似文献   

10.
In spite of its popularity, it has not been possible to vindicate the conventional wisdom that classical mechanics is a limiting case of quantum mechanics. The purpose of the present paper is to offer an alternative formulation of mechanics which provides a continuous transition between quantum and classical mechanics via environment-induced decoherence.  相似文献   

11.
         下载免费PDF全文
Nikola Buri&#   《中国物理 B》2011,20(12):120306-120306
Quantum dispersions of various sets of dynamical variables of an open Bose-Hubbard system in a classical limit are studied. To this end, an open system is described in terms of stochastic evolution of its quantum pure states. It is shown that the class of variables that display classical behaviour crucially depends on the type of noise. This is relevant in the mean-field approximation of open Bose-Hubbard dynamics.  相似文献   

12.
    
Nikola Buri&#   《物理学报》2011,60(12):120306
Quantum dispersions of various sets of dynamical variables of an open Bose-Hubbard system in a classical limit are studied. To this end, an open system is described in terms of stochastic evolution of its quantum pure states. It is shown that the class of variables that display classical behaviour crucially depends on the type of noise. This is relevant in the mean-field approximation of open Bose-Hubbard dynamics.  相似文献   

13.
We investigate analytically the dynamics of classical and quantum correlations between two strongly driven atoms, each of which is trapped inside a dissipative cavity. It is found that there exists a finite time interval during which the quantum discord initially prepared in the X-type states is not destroyed by the decay of the cavities. The sudden transition between classical correlation and quantum discord is sensitive to the initial-state parameter, the cavity decay rate, and the cavity mode-driving field detuning. Interestingly, we show that the transition time can be prolonged significantly by increasing the degree of the detuning.  相似文献   

14.
         下载免费PDF全文
赵文垒  揭泉林 《中国物理 B》2020,29(8):80302-080302
We investigate the quantum to classical transition induced by two-particle interaction via a system of periodically kicked particles. The classical dynamics of particle 1 is almost unaffected in condition that its mass is much larger than that of particle 2. Interestingly, such classically weak influence leads to the quantum to classical transition of the dynamical behavior of particle 1. Namely, the quantum diffusion of this particle undergoes the transition from dynamical localization to the classically chaotic diffusion with the decrease of the effective Planck constant ħeff. The behind physics is due to the growth of entanglement in the system. The classically very weak interaction leads to the exponential decay of purity in condition that the classical dynamics of external degrees freedom is strongly chaotic.  相似文献   

15.
We study the quantum discord dynamics of two noninteracting qubits that are, respectively, subject to classical noise. The results show that the dynamics of quantum discord are dependent on both the coupling between the qubits and classical noise, and the average switching rate of the classical noise. In the weak-coupling Markovian region, quantum discord exhibits exponent decay without revival, and can be well protected by increasing the average classical noise switching rate. While in the strong-coupling non-Markovian region, quantum discord reveals slowly decayed oscillations with quick revival by decreasing the average switching rate of the classical noise. Thus, our results provide a new method of protecting quantum discord in a two-qubit system by controlling the coupling between the qubits and classical noise, and the average switching rate of the classical noise.  相似文献   

16.
研究了在相位阻尼作用下非X态的量子失协与几何失协,用图像诠释了Bloch矢量以及相位阻尼系数p对失协的影响。通过讨论我们发现量子失协和几何失协都能在一段有限时间间隔内保持一定值,并且具有相同的突变点。量子失协和几何失协不会出现量子纠缠的突然死亡和重生现象,所以研究失协比纠缠更具有实际应用意义。  相似文献   

17.
18.
         下载免费PDF全文
高德营  高强  夏云杰 《中国物理 B》2017,26(11):110303-110303
The exact dynamics of an open quantum system consisting of one qubit driven by a classical driving field is investigated. Our attention is focused on the influences of single-and two-photon excitations on the dynamics of quantum coherence and quantum entanglement. It is shown that the atomic coherence can be improved or even maintained by the classical driving field, the non-Markovian effect, and the atom-reservoir detuning. The interconversion between the atomic coherence and the atom-reservoir entanglement exists and can be controlled by the appropriate conditions. The conservation of coherence for different partitions is explored, and the dynamics of a system with two-photon excitations is different from the case of single-photon excitation.  相似文献   

19.
20.
The quantum phase transition in the isotropic XY chain with three-site interaction has been studied by calculating the quantum discord, classical correlation, and concurrence measuring entanglement. It is found that the quantum discord is a better choice than concurrence to signal the presence of the quantum phase transition in this model, since that for next-nearest neighbor spins the derivative of the quantum discord still exhibits singularity at the critical point while there is no more entanglement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号